Quasi－two－body decays $B_{(s)} \rightarrow D\left(\rho, \rho^{\prime}, \rho^{\prime \prime} \rightarrow\right) \pi \pi$ in PQCD approach

Ai－Jun Ma（马爱军）

Ya Li，Wen－Fei Wang，and Zhen－Jun Xiao
Nanjing Normal University
Nucl．Phys．B 923， 54 （2017）；arXiv：1708．01889［hep－ph］

HFCPV，CCNU
 2017.10

Outline

$>$ Motivation and introduction
>Framework
$>$ Results and discussion
$>$ Summary

Motivation and introduction

Physics Letters B 763 (2016) 29-39

Contents lists available at ScienceDirect

Physics Letters B

-

Quasi-two-body decays $B \rightarrow K) \rho \rightarrow K \pi \pi$ in perturbative QCD approach

Wen-Fei Wang ${ }^{\text {a,b }}$, Hsiang-nan $/^{\text {a,* }}$
$D \quad P \quad$ Ya Li's talk

Three-body decays have non-trivial kinematics and the phase space distributions contain far more information than the two-body decays.

Quasi-two-body decays

Phys. Rev. D 94, 094015(2016)

- The study of $C P$ violation ($C P V$) in charmless three-body B decays is one of the important topics in contemporary particle physics.
- For $B \rightarrow D h h^{\prime}$: study spectroscopy in the $D K, D \pi, D p, K \pi, \pi \pi$ and $p \pi$ systems and understand such resonant states; measure the CKM angle...

Belle: Phys. Lett. B542, 171 (2002), Phys. Rev. D69, 112002 (2004), Phys. Rev. D76, 012006 (2007), Phys. Rev. D80, 052005 (2009)...

BABAR: Phys. Rev. Lett. 95, 171802 (2005), Phys. Rev. Lett. 96, 011803 (2006), Phys. Rev. D79, 112004 (2009)...

LHCb: Phys. Rev. D90, 072003 (2014), Phys. Rev. D91, 092002 (2015), Phys. Rev. D92, 032002 (2015), Phys. Rev. D92, 012012 (2015), Phys. Rev. D94, 072001(2016) ...

$\boldsymbol{B}_{(s)} \rightarrow \boldsymbol{D}(\rho \rightarrow) \pi \pi$

$B_{(s)} \rightarrow D \rho$ in 2 body framework

SU(3) symmetry:
Phys. Rev. D 75, 074021 (2007)...
Factorization-Assisted Topological-Amplitude Approach (FAT): Phys. Rev. D 92, 094016 (2015) ...

Perturbative QCD factorization approach(PQCD): Phys. Rev. D 69, 094018 (2004), Phys. Rev. D 78, 014018 (2008), J. Phys. G 37, 015002 (2010)...

PHYSICAL REVIEW D 92, 032002 (2015)
Phys.Rev. D76, 012006(2007) Belle
Dalitz plot analysis of $\boldsymbol{B}^{\mathbf{0}} \rightarrow \overline{\boldsymbol{D}}^{\mathbf{0}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$decays
[arXiv:1007.4464] BABAR

FIG. 9 (color online). Distributions of $m^{2}\left(\pi^{+} \pi^{-}\right)$in the $\rho(770)$ mass region. The different fit components are described in the legend. Results from (a) the isobar model and (b) the K-matrix model are shown.

PHYSICAL REVIEW D 92, 032002 (2015)

Dalitz plot analysis of $\boldsymbol{B}^{\mathbf{0}} \rightarrow \overline{\boldsymbol{D}}^{\mathbf{0}} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$decays

The first observation of the decays

$B^{0} \rightarrow \overline{\boldsymbol{D}^{0}} \boldsymbol{\rho}$ (1450)

R. Aaij et al. ${ }^{*}$
(LHCb Collaboration)

TABLE XI. Measured branching fractions of $\mathcal{B}\left(B^{0} \rightarrow r h_{3}\right) \times \mathcal{B}\left(r \rightarrow h_{1} h_{2}\right)$ for the isobar and K-matrix models. The first uncertainty is statistical, the second the experimental systematic, the third the model-dependent systematic, and the fourth the uncertainty from the normalization $B^{0} \rightarrow D^{*}(2010)^{-} \pi^{+}$channel.

Resonance	Isobar $\left(\times 10^{-5}\right)$	K-matrix $\left(\times 10^{-5}\right)$
$f_{0}(500)$	$11.2 \pm 0.8 \pm 0.5 \pm 2.1 \pm 0.5$	n / a
$f_{0}(980)$	$1.34 \pm 0.25 \pm 0.10 \pm 0.46 \pm 0.06$	n / a
$f_{0}(2020)$	$1.35 \pm 0.31 \pm 0.14 \pm 0.85 \pm 0.06$	n / a
S -wave	$14.1 \pm 0.5 \pm 0.6 \pm 1.3 \pm 0.7$	$14.2 \pm 0.6 \pm 1.5 \pm 0.9 \pm 0.7$
$\rho(770)$	$32.1 \pm 1.0 \pm 1.2 \pm 0.9 \pm 1.5$	$31.0 \pm 1.0 \pm 2.1 \pm 0.7 \pm 1.5$
$\omega(782)$	$0.42 \pm 0.11 \pm 0.02 \pm 0.03 \pm 0.02$	$0.43 \pm 0.11 \pm 0.02 \pm 0.02 \pm 0.02$
$\rho(1450)$	$1.36 \pm 0.28 \pm 0.08 \pm 0.19 \pm 0.06$	$1.91 \pm 0.37 \pm 0.73 \pm 0.19 \pm 0.09$
$\rho(1700)$	$0.33 \pm 0.11 \pm 0.06 \pm 0.05 \pm 0.02$	$0.73 \pm 0.18 \pm 0.53 \pm 0.10 \pm 0.03$
$f_{2}(1270)$	$9.5 \pm 0.5 \pm 0.4 \pm 1.0 \pm 0.4$	$9.1 \pm 0.6 \pm 0.8 \pm 0.5 \pm 0.4$
$D_{0}^{*}(2400)^{-}$	$7.7 \pm 0.5 \pm 0.3 \pm 0.3 \pm 0.4$	$8.0 \pm 0.5 \pm 0.8 \pm 0.4 \pm 0.4$
$D_{2}^{*}(2460)^{-}$	$24.4 \pm 0.7 \pm 1.0 \pm 0.4 \pm 1.2$	$23.8 \pm 0.7 \pm 1.2 \pm 0.5 \pm 1.1$
$D_{3}^{*}(2760)^{-}$	$1.03 \pm 0.16 \pm 0.07 \pm 0.08 \pm 0.05$	$1.34 \pm 0.19 \pm 0.16 \pm 0.06 \pm 0.06$

Framework

PQCD approach based on \mathbf{k}_{T} factorization Qi-An's talk

- Phys. Lett. B561, 258-265 (2003)

Three body nonleptonic B decays in perturbative QCD
(Chuan-Hung Chen and Hsiang-nan Li)
A new input is necessary in order to catch dominant contributions to three-body decays in a simple manner, the idea is to introduce two-meson distribution amplitudes.

A factorization formula for a $B \rightarrow \boldsymbol{h}_{1} \boldsymbol{h}_{2} \boldsymbol{h}_{\boldsymbol{3}}$ decay amplitude is written as:

$$
\mathcal{M}=\Phi_{B} \otimes H \otimes \Phi_{h_{1} h_{2}} \otimes \Phi_{h_{3}} .
$$

- Phys. Lett. B 763, 29 (2016) Quasi-two-body decays $B \rightarrow K \rho \rightarrow K \pi \pi$ in perturbative QCD approach (Wen-Fei Wang and Hsiang-nan Li)

From the definition of the vector current

Wen-Fei's Talk @NKU

Fig. 2. (a) Differential branching ratios for the $B^{ \pm} \rightarrow K^{ \pm} \rho^{0} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$decays, and (b) differential distributions of $\mathcal{A}_{C P}$ in w for the $B \rightarrow K \rho \rightarrow K \pi \pi$ decays.

$\boldsymbol{B}_{(s)} \rightarrow \boldsymbol{D}(\rho \rightarrow) \pi \pi$

The momenta can be chosen as:

$$
\begin{gathered}
p_{B}=\frac{m_{B}}{\sqrt{2}}\left(1,1,0_{\mathrm{T}}\right), \quad p=\frac{m_{B}}{\sqrt{2}}\left(1-r^{2}, \eta, 0_{\mathrm{T}}\right), \quad p_{3}=\frac{m_{B}}{\sqrt{2}}\left(r^{2}, 1-\eta, 0_{\mathrm{T}}\right), \\
k_{B}=\left(0, x_{B} \frac{m_{B}}{\sqrt{2}}, k_{B \mathrm{~T}}\right), \quad k=\left(z \frac{\left(1-r^{2}\right) m_{B}}{\sqrt{2}}, 0, k_{\mathrm{T}}\right), \quad k_{3}=\left(0, x_{3} \frac{(1-\eta) m_{B}}{\sqrt{2}}, k_{3_{\mathrm{T}}}\right), \\
p_{1}^{+}=\zeta p^{+}, \quad p_{2}^{+}=(1-\zeta) p^{+}, \quad p_{1}^{-}=(1-\zeta) p^{-}, \quad p_{2}^{-}=\zeta p^{-}, \\
\eta=w^{2} /\left[\left(1-r^{2}\right) m_{B}^{2}\right] \quad 2 m_{\pi} \leq w \leq m_{B}-m_{D}
\end{gathered}
$$

The P-wave two-pion distribution amplitudes are organized into:

$$
\begin{aligned}
& \phi_{\pi \pi}^{I=1}=\frac{1}{\sqrt{2 N_{c}}}\left[\not p \phi_{v v=-}^{I=1}\left(z, \zeta, w^{2}\right)+w \phi_{s}^{I=1}\left(z, \zeta, w^{2}\right)+\frac{\not p_{1} \not p_{2}-\not p_{2} p_{1}}{w(2 \zeta-1)} \phi_{t v=+}^{I=1}\left(z, \zeta, w^{2}\right)\right] \\
& \phi_{v v=-}^{I=1}\left(z, \zeta, w^{2}\right) \equiv \phi^{0}\left(z, \zeta, w^{2}\right)=\frac{3 F_{\pi}\left(w^{2}\right)}{\sqrt{2 N_{c}}} z(1-z)\left[1+a_{2}^{0} C_{2}^{3 / 2}(1-2 z)\right] P_{1}(2 \zeta-1) \\
& \phi_{s}^{I=1}\left(z, \zeta, w^{2}\right) \equiv \phi^{s}\left(z, \zeta, w^{2}\right)=\frac{3 F_{s}\left(w^{2}\right)}{2 \sqrt{2 N_{c}}}(1-2 z)\left[1+a_{2}^{s}\left(1-10 z+10 z^{2}\right)\right] P_{1}(2 \zeta-1), \\
& \phi_{t v=+}^{I=1}\left(z, \zeta, w^{2}\right) \equiv \phi^{t}\left(z, \zeta, w^{2}\right)=\frac{3 F_{t}\left(w^{2}\right)}{2 \sqrt{2 N_{c}}}(1-2 z)^{2}\left[1+a_{2}^{t} C_{2}^{3 / 2}(1-2 z)\right] P_{1}(2 \zeta-1)
\end{aligned}
$$

Precise measurement of the $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}(\gamma)$ cross section with the initial-state radiation method at BABAR

$$
F_{\pi}\left(w^{2}\right)=\left[\mathrm{GS}_{\rho}\left(w^{2}, m_{\rho}, \Gamma_{\rho}\right) \frac{1+c_{\omega} \mathrm{BW}_{\omega}\left(w^{2}, m_{\omega}, \Gamma_{\omega}\right)}{1+c_{\omega}}+\sum c_{i} \mathrm{GS}_{i}\left(w^{2}, m_{i}, \Gamma_{i}\right)\right]\left(1+\sum c_{i}\right)^{-1}
$$

the Gounaris-Sakurai (GS) model
$\mathrm{BW}^{\mathrm{GS}}(s, m, \Gamma)=\frac{m^{2}(1+d(m) \Gamma / m)}{m^{2}-s+f(s, m, \Gamma)-i m \Gamma(s, m, \Gamma)}$,

FIG. 45 (color online). The pion form factor-squared measured by BABAR as a function of $\sqrt{s^{\prime}}$ from 0.3 to 3 GeV and the VDM fit described in the text.

Results and discussion

$$
\begin{aligned}
& \mathcal{B}\left(B^{+} \rightarrow \overline{D^{0} \rho^{+}} \rightarrow \overline{D^{0}} \pi^{+} \pi^{0}\right)=\left\{\begin{array}{lll}
89, & \text { for } \quad w=\left[m_{\rho}-\Gamma_{\rho}, m_{\rho}+\Gamma_{\rho}\right], & \\
109, & \text { for } \quad w=\left[m_{\rho}-3 \Gamma_{\rho}, m_{\rho}+3 \Gamma_{\rho}\right], & 10^{-2} \\
115, & \text { for } \quad 2 m_{\pi} \leq w \leq m_{B}-m_{D} . &
\end{array}\right. \\
& \Gamma=149.1 \pm 0.8 \mathrm{MeV}
\end{aligned}
$$

Table 1
The PQCD predictions for the branching ratios (in units of 10^{-4}) of $B_{(s)} \rightarrow \bar{D}_{(s)} \lambda \rightarrow \bar{D}_{(s)} \pi \pi$ decays in the quasi-twobody (second column) and the two-body (third column) framework. We also list those conrently available measured values [64,65] of the two-body cases and the central values of the theoretical predictions as givenin Ref. [60] and Ref. [52].

Decays	Quasi-two-body	\approx Two-body	Data $[64,65]$	Two-body [60]	FAT $^{\downarrow}[52]$
$\mathcal{B}\left(B^{+} \rightarrow \bar{D}^{-} \rho^{+} \rightarrow \bar{D}^{0} \pi^{+} \pi^{0}\right)$	115_{-38}^{+59}	116_{-37}^{+56}	134 ± 18	111	105
$\mathcal{B}\left(B^{0} \rightarrow D^{-} \rho^{+} \rightarrow D^{-} \pi^{+} \pi^{0}\right)$	$82.3_{-29.0}^{+49.2}$	$88.2_{-30.7}^{+49.7}$	79 ± 13	67.0	65.3
$\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{-} \rho^{0} \rightarrow \bar{D}^{-} \pi^{+} \pi^{-}\right)$	$1.39_{-0.90}^{+1.24}$	$1.23_{-0.64}^{+0.90}$	2.9 ± 1.1	1.99	2.60
$\mathcal{B}\left(B_{s}^{0} \rightarrow \bar{D}^{-} \rho^{0} \rightarrow \bar{D}^{-} \pi^{+} \pi^{-}\right)$	$0.026_{-0.006}^{+0.010}$	$0.022_{-0.005}^{+0.006}$	-	0.042	0.010
$\mathcal{B}\left(B_{s}^{0} \rightarrow D^{-} \rho^{+} \rightarrow D^{-} \pi^{+} \pi^{0}\right)$	$0.051_{-0.014}^{+0.022}$	$0.044_{-0.011}^{+0.012}$	-	0.079	0.019
$\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \rho^{+} \rightarrow D_{s}^{-} \pi^{+} \pi^{0}\right)$	$77.2_{-25.6}^{+40.2}$	$79.5_{-26.3}^{+40.6}$	85 ± 21	47.0	78.6

Table 2
The PQCD predictions for the branching ratios of the CKM suppressed $B_{(s)} \rightarrow D_{(s)} \rho \rightarrow D_{(s)} \pi \pi$ decays in the quasi-two-body (second column) and the two-body (third column) framework. We also list those currently available measured values $[64,65]$ of the two-body cases and the central values of the theoretical predictions as given in Ref. [61] and Ref. [52].

Decays	Quasi-two-body	Two-body	Data [64,65]	Two-body [61]	FAT [52]
$\mathcal{B}\left(B^{+} \rightarrow D^{0} \rho^{+} \rightarrow D^{0} \pi^{+} \pi^{0}\right)\left(10^{-7}\right)$	$0.50_{-0.14}^{+0.22}$	$0.53_{-0.14}^{+0.26}$	-	0.93	4.80
$\mathcal{B}\left(B^{0} \rightarrow D^{+} \rho^{-} \rightarrow D^{+} \pi^{-} \pi^{0}\right)\left(10^{-7}\right)$	$7.63_{-3.08}^{+5.92}$	$9.45_{-4.89}^{+6.48}$	-	12.7	9.40
$\mathcal{B}\left(B^{0} \rightarrow D^{0} \rho^{0} \rightarrow D^{0} \pi^{+} \pi^{-}\right)\left(10^{-7}\right)$	$0.13_{-0.08}^{+0.09}$	$0.13_{-0.05}^{+0.10}$	-	0.34	1.20
$\mathcal{B}\left(B^{+} \rightarrow D^{+} \rho^{0} \rightarrow D^{+} \pi^{+} \pi^{-}\right)\left(10^{-7}\right)$	$5.33_{-2.65}^{+3.60}$	$5.99_{-2.91}^{+3.93}$	-	7.50	3.30
$\mathcal{B}\left(B_{s}^{0} \rightarrow D^{0} \rho^{0} \rightarrow D^{0} \pi^{+} \pi^{-}\right)\left(10^{-7}\right)$	$3.41_{-0.75}^{+1.03}$	$3.13_{-0.64}^{+0.98}$	-	1.90	1.30
$\mathcal{B}\left(B_{s}^{0} \rightarrow D^{+} \rho^{-} \rightarrow D^{+} \pi^{-} \pi^{0}\right)\left(10^{-7}\right)$	$6.88_{-1.58}^{+1.98}$	$6.30_{-1.29}^{+1.96}$	-	3.70	2.50
$\mathcal{B}\left(B^{+} \rightarrow D_{s}^{+} \rho^{0} \rightarrow D_{s}^{+} \pi^{+} \pi^{-}\right)\left(10^{-5}\right)$	$1.52_{-0.82}^{+1.11}$	$1.82_{-0.91}^{+1.19}$	<30	1.94	1.68
$\mathcal{B}\left(B^{0} \rightarrow D_{s}^{+} \rho^{-} \rightarrow D_{s}^{+} \pi^{-} \pi^{0}\right)\left(10^{-5}\right)$	$2.82_{-1.53}^{+2.04}$	$3.37_{-1.63}^{+2.19}$	1.1 ± 0.9	3.59	3.12

PDG2016

ρ (1450) DECAY M ODES	Fraction (Γ_{i} / Γ)	$p(\mathrm{MeV} / \mathrm{c})$
$\pi \pi$	seen	720
4π	seen	669
$e^{+} e^{-}$	seen	732
$\eta \rho$	seen	311
$a_{2}(1320) \pi$	not seen	54
K \bar{K}	not seen	541
K $\bar{K}^{*}(892)+$ c.c.	possibly seen	229
$\eta \gamma$	seen	630
$f_{0}(500) \gamma$	not seen	-
$f_{0}(980) \gamma$	not seen	398
$f_{0}(1370) \gamma$	not seen	92
$f_{2}(1270) \gamma$	not seen	177
$\rho(1700)$ DECAY M ODES	Fraction (Γ_{i} / Γ)	$p(\mathrm{MeV} / \mathrm{c})$
$2\left(\pi^{+} \pi^{-}\right)$	large	803
$\rho \pi \pi$	dominant	653
$\rho^{0} \pi^{+} \pi^{-}$	large	651
$\rho^{ \pm} \pi^{\mp} \pi^{0}$	large	652
$a_{1}(1260) \pi$	seen	404
$h_{1}(1170) \pi$	seen	447
$\pi(1300) \pi$	seen	349
$\rho \rho$	seen	372
$\pi^{+} \pi^{-}$	seen	849
$\pi \pi$	seen	849
K $\bar{K}^{*}(892)+$ c.c.	seen	496
$\eta \rho$	seen	545
$a_{2}(1320) \pi$	not seen	334
$K \bar{K}$	seen	704
$e^{+} e^{-}$	seen	860
$\pi^{0} \omega$	seen	674

$$
\begin{aligned}
& \Gamma_{\rho^{\prime} \rightarrow \pi \pi}=\frac{g_{\rho^{\prime} \pi \pi}^{2}}{6 \pi} \frac{\left|\overrightarrow{p_{\pi}}\left(m_{\rho^{\prime}}^{2}\right)\right|^{3}}{m_{\rho^{\prime}}^{2}} . \\
& \mathcal{B}\left(\rho^{\prime} \rightarrow \pi \pi\right)=10.04_{-2.61}^{+5.23} \% \\
& \text { Phys. Lett. B 763, 29 (2016) } \\
& \mathcal{B}\left(\rho^{\prime \prime} \rightarrow \pi \pi\right)=8.11_{-1.47}^{+2.22} \%
\end{aligned}
$$

Phys. Rev. D 96, 036014 (2017)

Quasi-two body

$$
\mathcal{B}\left(B_{(s)} \rightarrow D\left(\rho^{\prime}, \rho^{\prime \prime}\right) \rightarrow D \pi \pi\right)=\mathcal{B}\left(B_{(s)} \rightarrow D\left(\rho^{\prime}, \rho^{\prime \prime}\right)\right) \cdot \mathcal{B}\left(\left(\rho^{\prime}, \rho^{\prime \prime}\right) \rightarrow \pi \pi\right)
$$

Decay modes
Quasi-two-body decays
Two-body decays

$B_{(s)} \rightarrow \bar{D}_{(s)} \rho^{\prime} \rightarrow \bar{D}_{(s)} \pi \pi$	\mathcal{B}	\mathcal{B}
$B^{+} \rightarrow \bar{D}^{0} \rho^{\prime+} \rightarrow \bar{D}^{0} \pi^{+} \pi^{0}$	$\left(8.68{ }_{-2.91}^{+4.84}\left(\omega_{B}\right)_{-0.33}^{+0.42}\left(a_{2}^{t}\right)_{-0.09}^{+0.11}\left(a_{2}^{0}\right)_{-0.05}^{+0.04}\left(a_{2}^{s}\right)_{-0.58}^{+0.65}\left(C_{D}\right)\right) \times 10^{-4}$	$\left(8.65_{-2.98}^{+4.88}\right) \times 10^{-3}$
$B^{0} \rightarrow D^{-} \rho^{\prime+} \rightarrow D^{-} \pi^{+} \pi^{0}$	$\left(6.80_{-2.49}^{+4.27}\left(\omega_{B}\right)_{-0.12}^{+0.17}\left(a_{2}^{t}\right)_{-0.03}^{+0.09}\left(a_{2}^{0}\right)_{-0.08}^{+0.08}\left(a_{2}^{s}\right)_{-0.50}^{+0.59}\left(C_{D}\right)\right) \times 10^{-4}$	$\left(6.77_{-2.53}^{+4.30}\right) \times 10^{-3}$
$B^{0} \rightarrow \bar{D}^{0} \rho^{\prime 0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$	$\left(9.04_{-2.75}^{+3.71}\left(\omega_{B}\right)_{-4.26}^{+4.83}\left(a_{2}^{t}\right)_{-0.59}^{+0.45}\left(a_{2}^{0}\right)_{-0.07}^{+0.04}\left(a_{2}^{s}\right)_{-0.10}^{+0.14}\left(C_{D}\right)\right) \times 10^{-6}$	$\left(9.00_{-5.18}^{+6.08}\right) \times 10^{-5}$
$B_{s}^{0} \rightarrow D^{-} \rho^{\prime+} \rightarrow D^{-} \pi^{+} \pi^{0}$	$\left(4.21{ }_{-0.61}^{+0.55}\left(\omega_{B}\right)_{-0.81}^{+1.10}\left(a_{2}^{t}\right)_{-0.25}^{+0.27}\left(a_{2}^{0}\right)_{-0.39}^{+0.46}\left(a_{2}^{s}\right)_{-0.19}^{+0.11}\left(C_{D}\right)\right) \times 10^{-7}$	$\left(4.19_{-1.13}^{+1.34}\right) \times 10^{-6}$
$B_{s}^{0} \rightarrow \bar{D}^{0} \rho^{\prime 0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$	$\left(1.88_{-0.20}^{+0.48}\left(\omega_{B}\right)_{-0.34}^{+0.57}\left(a_{2}^{t}\right)_{-0.11}^{+0.12}\left(a_{2}^{0}\right)_{-0.17}^{+0.25}\left(a_{2}^{s}\right)_{-0.08}^{+0.10}\left(C_{D}\right)\right) \times 10^{-7}$	$\left(1.87_{-0.45}^{+0.80}\right) \times 10^{-6}$
$B_{s}^{0} \rightarrow D_{s}^{-} \rho^{\prime+} \rightarrow D_{s}^{-} \pi^{+} \pi^{0}$	$\left(5.33_{-1.80}^{+2.96}\left(\omega_{B}\right)_{-0.00}^{+0.00}\left(a_{2}^{t}\right)_{-0.01}^{+0.02}\left(a_{2}^{0}\right)_{-0.00}^{+0.00}\left(a_{2}^{s}\right)_{-0.40}^{+0.41}\left(C_{D}\right)\right) \times 10^{-4}$	$\left(5.31_{-1.83}^{+2.98}\right) \times 10^{-3}$
$B_{(s)} \rightarrow D_{(s)} \rho^{\prime} \rightarrow D_{(s)} \pi \pi$	\mathcal{B}	\mathcal{B}
$B^{+} \rightarrow D^{0} \rho^{\prime+} \rightarrow D^{0} \pi^{+} \pi^{0}$	$\left(1.51{ }_{-0.29}^{+0.33}\left(\omega_{B}\right)_{-0.05}^{+0.14}\left(a_{2}^{t}\right)_{-0.07}^{+0.13}\left(a_{2}^{0}\right)_{-0.25}^{+0.29}\left(a_{2}^{s}\right)_{-0.04}^{+0.04}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(1.50_{-0.39}^{+0.48}\right) \times 10^{-7}$
$B^{+} \rightarrow D^{+} \rho^{\prime 0} \rightarrow D^{+} \pi^{+} \pi^{-}$	$\left(5.88_{-0.82}^{+0.90}\left(\omega_{B}\right)_{-1.17}^{+1.46}\left(a_{2}^{t}\right)_{-0.06}^{+0.07}\left(a_{2}^{0}\right)_{-0.82}^{+0.88}\left(a_{2}^{s}\right)_{-0.04}^{+0.05}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(5.86_{-1.65}^{+1.92}\right) \times 10^{-7}$
$B^{0} \rightarrow D^{0} \rho^{\prime 0} \rightarrow D^{0} \pi^{+} \pi^{-}$	$\left(9.75_{-3.18}^{+3.30}\left(\omega_{B}\right)_{-2.36}^{+4.05}\left(a_{2}^{t}\right)_{-1.26}^{+1.25}\left(a_{2}^{0}\right)_{-3.71}^{+5.19}\left(a_{2}^{s}\right)_{-0.81}^{+1.22}\left(C_{D}\right)\right) \times 10^{-10}$	$\left(9.71_{-5.61}^{+7.53}\right) \times 10^{-9}$
$B^{0} \rightarrow D^{+} \rho^{\prime-} \rightarrow D^{+} \pi^{-} \pi^{0}$	$\left(7.10_{-1.02}^{+1.06}\left(\omega_{B}\right)_{-2.03}^{+2.61}\left(a_{2}^{t}\right)_{-0.01}^{+0.03}\left(a_{2}^{0}\right)_{-1.22}^{+1.32}\left(a_{2}^{s}\right)_{-0.12}^{+0.13}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(7.077_{-2.57}^{+3.10}\right) \times 10^{-7}$
$B^{+} \rightarrow D_{s}^{+} \rho^{\prime 0} \rightarrow D_{s}^{+} \pi^{+} \pi^{-}$	$\left(1.38_{-0.20}^{+0.20}\left(\omega_{B}\right)_{-0.34}^{+0.42}\left(a_{2}^{t}\right)_{-0.04}^{+0.04}\left(a_{2}^{0}\right)_{-0.20}^{+0.22}\left(a_{2}^{s}\right)_{-0.01}^{+0.01}\left(C_{D}\right)\right) \times 10^{-6}$	$\left(1.37_{-0.44}^{+0.51}\right) \times 10^{-5}$
$B^{0} \rightarrow D_{s}^{+} \rho^{\prime-} \rightarrow D_{s}^{+} \pi^{-} \pi^{0}$	$\left(2.56_{-0.36}^{+0.38}\left(\omega_{B}\right)_{-0.60}^{+0.79}\left(a_{2}^{t}\right)_{-0.08}^{+0.08}\left(a_{2}^{0}\right)_{-0.40}^{+0.38}\left(a_{2}^{s}\right)_{-0.02}^{+0.02}\left(C_{D}\right)\right) \times 10^{-6}$	$\left(2.55_{-0.81}^{+0.95}\right) \times 10^{-5}$
$B_{s}^{0} \rightarrow D^{0} \rho^{\prime 0} \rightarrow D^{0} \pi^{+} \pi^{-}$	$\left(3.26_{-0.51}^{+0.47}\left(\omega_{B}\right)_{-0.31}^{+0.29}\left(a_{2}^{t}\right)_{-0.25}^{+0.21}\left(a_{2}^{0}\right)_{-0.08}^{+0.07}\left(a_{2}^{s}\right)_{-0.19}^{+0.19}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(3.25_{-0.68}^{+0.62}\right) \times 10^{-7}$
$B_{s}^{0} \rightarrow D^{+} \rho^{\prime-} \rightarrow D^{+} \pi^{-} \pi^{0}$	$\left(6.56_{-1.03}^{+0.93}\left(\omega_{B}\right)_{-0.66}^{+0.56}\left(a_{2}^{t}\right)_{-0.53}^{+0.39}\left(a_{2}^{0}\right)_{-0.18}^{+0.14}\left(a_{2}^{s}\right)_{-0.38}^{+0.38}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(6.53_{-1.40}^{+1.22}\right) \times 10^{-7}$

$$
\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} \rho^{0}(1450) \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)=\left\{\begin{array}{l}
1.36 \pm 0.28 \pm 0.08 \pm 0.19 \pm 0.06 \times 10^{-5} \text { (Isobar) } \\
1.91 \pm 0.37 \pm 0.73 \pm 0.19 \pm 0.09 \times 10^{-5} \text { (K - matrix) }
\end{array}\right.
$$

Decay modes

$B_{(s)} \rightarrow \bar{D}_{(s)} \rho^{\prime} \rightarrow \bar{D}_{(s)} \pi \pi$	\mathcal{B}	\mathcal{B}
$B^{+} \rightarrow \bar{D}^{0} \rho^{\prime+} \rightarrow \bar{D}^{0} \pi^{+} \pi^{0}$	$\left(8.68{ }_{-2.91}^{+4.84}\left(\omega_{B}\right)_{-0.33}^{+0.42}\left(a_{2}^{t}\right)_{-0.09}^{+0.11}\left(a_{2}^{0}\right)_{-0.05}^{+0.04}\left(a_{2}^{s}\right)_{-0.58}^{+0.65}\left(C_{D}\right)\right) \times 10^{-4}$	$\left(8.65_{-2.98}^{+4.88}\right) \times 10^{-3}$
$B^{0} \rightarrow D^{-} \rho^{\prime+} \rightarrow D^{-} \pi^{+} \pi^{0}$	$\left(6.80_{-2.49}^{+4.27}\left(\omega_{B}\right)_{-0.12}^{+0.17}\left(a_{2}^{t}\right)_{-0.03}^{+0.09}\left(a_{2}^{0}\right)_{-0.08}^{+0.08}\left(a_{2}^{s}\right)_{-0.50}^{+0.59}\left(C_{D}\right)\right) \times 10^{-4}$	$\left(6.77_{-2.53}^{+4.30}\right) \times 10^{-3}$
$B^{0} \rightarrow \bar{D}^{0} \rho^{\prime 0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$	$\left(9.04_{-2.75}^{+3.71}\left(\omega_{B}\right)_{-4.26}^{+4.83}\left(a_{2}^{t}\right)_{-0.59}^{+0.45}\left(a_{2}^{0}\right)_{-0.07}^{+0.04}\left(a_{2}^{s}\right)_{-0.10}^{+0.14}\left(C_{D}\right)\right) \times 10^{-6}$	$\left(9.00_{-5.18}^{+6.08}\right) \times 10^{-5}$
$B_{s}^{0} \rightarrow D^{-} \rho^{\prime+} \rightarrow D^{-} \pi^{+} \pi^{0}$	$\left(4.21{ }_{-0.61}^{+0.55}\left(\omega_{B}\right)_{-0.81}^{+1.10}\left(a_{2}^{t}\right)_{-0.25}^{+0.27}\left(a_{2}^{0}\right)_{-0.39}^{+0.46}\left(a_{2}^{s}\right)_{-0.19}^{+0.11}\left(C_{D}\right)\right) \times 10^{-7}$	$\left(4.19_{-1.13}^{+1.34}\right) \times 10^{-6}$
$B_{s}^{0} \rightarrow \bar{D}^{0} \rho^{\prime 0} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$	$\left(1.88_{-0.20}^{+0.48}\left(\omega_{B}\right)_{-0.34}^{+0.57}\left(a_{2}^{t}\right)_{-0.11}^{+0.12}\left(a_{2}^{0}\right)_{-0.17}^{+0.25}\left(a_{2}^{s}\right)_{-0.08}^{+0.10}\left(C_{D}\right)\right) \times 10^{-7}$	$\left(1.87_{-0.45}^{+0.80}\right) \times 10^{-6}$
$B_{s}^{0} \rightarrow D_{s}^{-} \rho^{\prime+} \rightarrow D_{s}^{-} \pi^{+} \pi^{0}$	$\left(5.33_{-1.80}^{+2.96}\left(\omega_{B}\right)_{-0.00}^{+0.00}\left(a_{2}^{t}\right)_{-0.01}^{+0.02}\left(a_{2}^{0}\right)_{-0.00}^{+0.00}\left(a_{2}^{s}\right)_{-0.40}^{+0.41}\left(C_{D}\right)\right) \times 10^{-4}$	$\left(5.31_{-1.83}^{+2.98}\right) \times 10^{-3}$
$B_{(s)} \rightarrow D_{(s)} \rho^{\prime} \rightarrow D_{(s)} \pi \pi$	\mathcal{B}	\mathcal{B}
$B^{+} \rightarrow D^{0} \rho^{\prime+} \rightarrow D^{0} \pi^{+} \pi^{0}$	$\left(1.51{ }_{-0.29}^{+0.33}\left(\omega_{B}\right)_{-0.05}^{+0.14}\left(a_{2}^{t}\right)_{-0.07}^{+0.13}\left(a_{2}^{0}\right)_{-0.25}^{+0.29}\left(a_{2}^{s}\right)_{-0.04}^{+0.04}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(1.50_{-0.39}^{+0.48}\right) \times 10^{-7}$
$B^{+} \rightarrow D^{+} \rho^{\prime 0} \rightarrow D^{+} \pi^{+} \pi^{-}$	$\left(5.88_{-0.82}^{+0.90}\left(\omega_{B}\right)_{-1.17}^{+1.46}\left(a_{2}^{t}\right)_{-0.06}^{+0.07}\left(a_{2}^{0}\right)_{-0.82}^{+0.88}\left(a_{2}^{s}\right)_{-0.04}^{+0.05}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(5.86_{-1.65}^{+1.92}\right) \times 10^{-7}$
$B^{0} \rightarrow D^{0} \rho^{\prime 0} \rightarrow D^{0} \pi^{+} \pi^{-}$	$\left(9.75_{-3.18}^{+3.30}\left(\omega_{B}\right)_{-2.36}^{+4.05}\left(a_{2}^{t}\right)_{-1.26}^{+1.25}\left(a_{2}^{0}\right)_{-3.71}^{+5.19}\left(a_{2}^{s}\right)_{-0.81}^{+1.22}\left(C_{D}\right)\right) \times 10^{-10}$	$\left(9.71_{-5.61}^{+7.53}\right) \times 10^{-9}$
$B^{0} \rightarrow D^{+} \rho^{\prime-} \rightarrow D^{+} \pi^{-} \pi^{0}$	$\left(7.10_{-1.02}^{+1.06}\left(\omega_{B}\right)_{-2.03}^{+2.61}\left(a_{2}^{t}\right)_{-0.01}^{+0.03}\left(a_{2}^{0}\right)_{-1.22}^{+1.32}\left(a_{2}^{s}\right)_{-0.12}^{+0.13}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(7.077_{-2.57}^{+3.10}\right) \times 10^{-7}$
$B^{+} \rightarrow D_{s}^{+} \rho^{\prime 0} \rightarrow D_{s}^{+} \pi^{+} \pi^{-}$	$\left(1.38_{-0.20}^{+0.20}\left(\omega_{B}\right)_{-0.34}^{+0.42}\left(a_{2}^{t}\right)_{-0.04}^{+0.04}\left(a_{2}^{0}\right)_{-0.20}^{+0.22}\left(a_{2}^{s}\right)_{-0.01}^{+0.01}\left(C_{D}\right)\right) \times 10^{-6}$	$\left(1.37_{-0.44}^{+0.51}\right) \times 10^{-5}$
$B^{0} \rightarrow D_{s}^{+} \rho^{\prime-} \rightarrow D_{s}^{+} \pi^{-} \pi^{0}$	$\left(2.56_{-0.36}^{+0.38}\left(\omega_{B}\right)_{-0.60}^{+0.79}\left(a_{2}^{t}\right)_{-0.08}^{+0.08}\left(a_{2}^{0}\right)_{-0.40}^{+0.38}\left(a_{2}^{s}\right)_{-0.02}^{+0.02}\left(C_{D}\right)\right) \times 10^{-6}$	$\left(2.55_{-0.81}^{+0.95}\right) \times 10^{-5}$
$B_{s}^{0} \rightarrow D^{0} \rho^{\prime 0} \rightarrow D^{0} \pi^{+} \pi^{-}$	$\left(3.26_{-0.51}^{+0.47}\left(\omega_{B}\right)_{-0.31}^{+0.29}\left(a_{2}^{t}\right)_{-0.25}^{+0.21}\left(a_{2}^{0}\right)_{-0.08}^{+0.07}\left(a_{2}^{s}\right)_{-0.19}^{+0.19}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(3.25_{-0.68}^{+0.62}\right) \times 10^{-7}$
$B_{s}^{0} \rightarrow D^{+} \rho^{\prime-} \rightarrow D^{+} \pi^{-} \pi^{0}$	$\left(6.56_{-1.03}^{+0.93}\left(\omega_{B}\right)_{-0.66}^{+0.56}\left(a_{2}^{t}\right)_{-0.53}^{+0.39}\left(a_{2}^{0}\right)_{-0.18}^{+0.14}\left(a_{2}^{s}\right)_{-0.38}^{+0.38}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(6.53_{-1.40}^{+1.22}\right) \times 10^{-7}$

$$
\mathcal{B}\left(B^{0} \rightarrow \bar{D}^{0} \rho^{0}(1700) \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}\right)=\left\{\begin{array}{l}
0.33 \pm 0.11 \pm 0.06 \pm 0.05 \pm 0.02 \times 10^{-5} \text { (Isobar) } \\
0.73 \pm 0.18 \pm 0.53 \pm 0.10 \pm 0.03 \times 10^{-5} \text { (K }- \text { matrix) } .
\end{array}\right.
$$

Decay modes	Quasi-two-body decays	Two-body decays
$B_{(s)} \rightarrow \bar{D}_{(s)} \rho^{\prime \prime} \rightarrow \bar{D}_{(s)} \pi \pi$	\mathcal{B}	\mathcal{B}
$B^{+} \rightarrow \bar{D}^{0} \rho^{\prime \prime+} \rightarrow \bar{D}^{0} \pi^{+} \pi^{0}$	$\left(4.58_{-1.59}^{+2.62}\left(\omega_{B}\right)_{-0.21}^{+0.17}\left(a_{2}^{t}\right)_{-0.05}^{+0.06}\left(a_{2}^{0}\right)_{-0.01}^{+0.01}\left(a_{2}^{s}\right)_{-0.30}^{+0.29}\left(C_{D}\right)\right) \times 10^{-4}$	$\left(5.65_{-2.01}^{+3.26}\right) \times 10^{-3}$
$B^{0} \rightarrow D^{-} \rho^{\prime \prime+} \rightarrow D^{-} \pi^{+} \pi^{0}$	$\left(3.30_{-121}^{+2.09}\left(\omega_{B}\right)_{-0.07}^{+0.08}\left(a_{2}^{t}\right)_{-0.02}^{+0.03}\left(a_{2}^{0}\right)_{-0.04}^{+0.05}\left(a_{2}^{s}\right)_{-0.26}^{+0.26}\left(C_{D}\right)\right) \times 10^{-4}$	$\left(4.07_{-1.53}^{+2.60}\right) \times 10^{-3}$
$B^{0} \rightarrow \bar{D}^{0} \rho^{\prime \prime \prime} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$	$\left(5.688_{-1.65}^{+2.14}\left(\omega_{B}\right)_{-2.46}^{+2.96}\left(a_{2}^{t}\right)_{-0.09}^{+0.09}\left(a_{2}^{0}\right)_{-0.34}^{+0.27}\left(a_{2}^{s}\right)_{-0.07}^{+0.09}\left(C_{D}\right)\right) \times 10^{-6}$	$\left(7.00_{-3.98}^{+4.51}\right) \times 10^{-5}$
$B_{s}^{0} \rightarrow D^{-} \rho^{\prime \prime+} \rightarrow D^{-} \pi^{+} \pi^{0}$	$\left(2.08_{-0.43}^{+0.49}\left(\omega_{B}\right)_{-0.60}^{+0.78}\left(a_{2}^{t}\right)_{-0.13}^{+0.11}\left(a_{2}^{0}\right)_{-0.30}^{+0.34}\left(a_{2}^{s}\right)_{-0.03}^{+0.04}\left(C_{D}\right)\right) \times 10^{-7}$	$\left(2.56_{-0.97}^{+1.21}\right) \times 10^{-6}$
$B_{s}^{0} \rightarrow \bar{D}^{0} \rho^{\prime \prime \prime} \rightarrow \bar{D}^{0} \pi^{+} \pi^{-}$	$\left(1.04_{-0.21}^{+0.23}\left(\omega_{B}\right)_{-0.31}^{+0.39}\left(a_{2}^{t}\right)_{-0.07}^{+0.06}\left(a_{2}^{0}\right)_{-0.16}^{+0.17}\left(a_{2}^{s}\right)_{-0.02}^{+0.02}\left(C_{D}\right)\right) \times 10^{-7}$	$\left(1.28_{-0.51}^{+0.60}\right) \times 10^{-6}$
$B_{s}^{0} \rightarrow D_{s}^{-} \rho^{\prime \prime+} \rightarrow D_{s}^{-} \pi^{+} \pi^{0}$	$\left(2.57_{-0.89}^{+1.46}\left(\omega_{B}\right)_{-0.00}^{+0.00}\left(a_{2}^{t}\right)_{-0.01}^{+0.01}\left(a_{2}^{0}\right)_{-0.00}^{+0.00}\left(a_{2}^{s}\right)_{-0.19}^{+0.20}\left(C_{D}\right)\right) \times 10^{-4}$	$\left(3.17_{-1.11}^{+1.82}\right) \times 10^{-5}$
$B_{(s)} \rightarrow D_{(s)} \rho^{\prime \prime} \rightarrow D_{(s)} \pi \pi$	\mathcal{B}	\mathcal{B}
$B^{+} \rightarrow D^{0} \rho^{\prime \prime+} \rightarrow D^{0} \pi^{+} \pi^{0}$	$\left(8.39_{-1.38}^{+1.17}\left(\omega_{B}\right)_{-0.89}^{+1.41}\left(a_{2}^{t}\right)_{-0.55}^{+0.64}\left(a_{2}^{0}\right)_{-1.27}^{+1.68}\left(a_{2}^{s}\right)_{-0.22}^{+0.06}\left(C_{D}\right)\right) \times 10^{-9}$	$\left(1.03_{-0.27}^{+0.31}\right) \times 10^{-7}$
$\mathrm{B}^{+} \rightarrow D^{+} \rho^{\prime \prime 0} \rightarrow D^{+} \pi^{+} \pi^{-}$	$\left(1.55_{-0.07}^{+0.07}\left(\omega_{B}\right)_{-0.17}^{+0.36}\left(a_{2}^{t}\right)_{-0.01}^{+0.01}\left(a_{2}^{0}\right)_{-0.29}^{+0.33}\left(a_{2}^{s}\right)_{-0.02}^{+0.02}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(1.91_{-0.43}^{+0.61}\right) \times 10^{-7}$
$B^{0} \rightarrow D^{0} \rho^{\prime \prime \prime} \rightarrow D^{0} \pi^{+} \pi^{-}$	$\left(3.62_{-1.18}^{+0.90}\left(\omega_{B}\right)_{-0.81}^{+1.58}\left(a_{2}^{t}\right)_{-0.59}^{+0.45}\left(a_{2}^{0}\right)_{-1.79}^{+2.46}\left(a_{2}^{s}\right)_{-0.42}^{+0.25}\left(C_{D}\right)\right) \times 10^{-10}$	$\left(4.46_{-2.97}^{+3.82}\right) \times 10^{-9}$
$B^{0} \rightarrow D^{+} \rho^{\prime \prime-} \rightarrow D^{+} \pi^{-} \pi^{0}$	$\left(1.41_{-0.04}^{+0.06}\left(\omega_{B}\right)_{-0.37}^{+0.73}\left(a_{2}^{t}\right)_{-0.03}^{+0.01}\left(a_{2}^{0}\right)_{-0.29}^{+0.36}\left(a_{2}^{s}\right)_{-0.04}^{+0.03}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(1.74_{-0.59}^{+1.01}\right) \times 10^{-7}$
$\mathrm{B}^{+} \rightarrow D_{s}^{+} \rho^{\prime \prime 0} \rightarrow D_{s}^{+} \pi^{+} \pi^{-}$	$\left(3.25_{-0.14}^{+0.02}\left(\omega_{B}\right)_{-0.77}^{+1.32}\left(a_{2}^{t}\right)_{-0.08}^{+0.08}\left(a_{2}^{0}\right)_{-0.55}^{+0.61}\left(a_{2}^{s}\right)_{-0.03}^{+0.03}\left(C_{D}\right)\right) \times 10^{-7}$	$\left(4.01_{-1.18}^{+1.80}\right) \times 10^{-6}$
$B^{0} \rightarrow D_{s}^{+} \rho^{\prime \prime-} \rightarrow D_{s}^{+} \pi^{-} \pi^{0}$	$\left(6.03_{-0.26}^{+0.02}\left(\omega_{B}\right)_{-1.44}^{+2.44}\left(a_{2}^{t}\right)_{-0.14}^{+0.15}\left(a_{2}^{0}\right)_{-1.02}^{+1.14}\left(a_{2}^{s}\right)_{-0.05}^{+0.06}\left(C_{D}\right)\right) \times 10^{-7}$	$\left(7.44_{-2.21}^{+3.33}\right) \times 10^{-6}$
$B_{s}^{0} \rightarrow D^{0} \rho^{\prime \prime}{ }^{\prime \prime} \rightarrow D^{0} \pi^{+} \pi^{-}$	$\left(1.65_{-0.26}^{+0.32}\left(\omega_{B}\right)_{-0.15}^{+0.20}\left(a_{2}^{t}\right)_{-0.10}^{+0.14}\left(a_{2}^{0}\right)_{-0.05}^{+0.06}\left(a_{2}^{s}\right)_{-0.08}^{+0.09}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(2.04_{-0.41}^{+0.52}\right) \times 10^{-7}$
$B_{s}^{0} \rightarrow D^{+} \rho^{\prime \prime-} \rightarrow D^{+} \pi^{-} \pi^{0}$	$\left(3.31_{-0.52}^{+0.64}\left(\omega_{B}\right)_{-0.30}^{+0.40}\left(a_{2}^{t}\right)_{-0.20}^{+0.26}\left(a_{2}^{0}\right)_{-0.08}^{+0.13}\left(a_{2}^{s}\right)_{-0.17}^{+0.18}\left(C_{D}\right)\right) \times 10^{-8}$	$\left(4.08_{-0.80}^{+0.99}\right) \times 10^{-7}$

Summay

We studied the quasi-two-body $B_{(s)} \rightarrow D\left(\rho, \rho^{\prime}, \rho^{\prime \prime} \rightarrow\right) \pi \pi$ decays by employing the PQCD factorization approach and found that:

- For all considered decays, the PQCD predictions based on the quasi-two-body and the two-body framework agree well with each other and most of our predictions agree well with those currently available experimental measurements;
- We can extract the decay rates for the two body decays from the corresponding quasi-two-body decays.

Thank yoy!

