The production mechanisms for double heavy hadrons

Chao-Hsi Chang (张肇西) I.T.P., Chinese Academy of Sciences

HFCPV-2017@WuHan Oct. 27-29, 2017

Outline

- Double Heavy Flavor Hadrons
- Mechanisms for Double Heavy Hadron Production
 - Non-perturbative Mechanism
 - **■**Perturbative Mechanism
- The Production @ Tevatron & LHC
- The Production @ Z-factory
- Summary & outlook

Double Heavy Flavor Hadrons

```
Double Heavy Flavor Mesons (cb):
   B_c, .....
Double Heavy Flavor Baryons:
                       Baryons (bcu):
                                            Baryons (bbu):
Baryons (ccu):
                         \Xi_{bcu}^+,\cdots
                                               \Xi_{bb}^0, ....
   \Xi_{cc}^{++},\cdots
                                            Baryons (bbd):
Baryons (ccd):
                      Baryons (bcd):
                          \Xi_{bc}^0,\cdots
                                               \Xi_{bb}^-,\cdots
   \Xi_{cc}^+,\cdots
                      Baryons (bcs):
                                            Baryons (bbs):
Baryons (ccs):
                          \Omega_{bc}^0, \cdots
                                               \Omega_{bb}^-,\cdots
   \Omega_{cc}^+,\cdots
```

Doubly heavy hadrons play a special role in study of hadron physics!

The Mechanisms for Production

The production is the first problem

- The non-perturbative mechanisms:
- > String Model (Lund Model)
- > Webber Cluster Model
- > SDQC Model

 $u:d:s:c\approx 1.0:1.0:0.3\sim 0.4:10^{-10}\sim 10^{-11} @ \sim 0^{\circ}K$

The non-perturbative production

The non-perturbative production for doubly heavy hadrons is ignorable unless QGP @ very high temperature:

 $T >> m_c$

(Even when $T > m_c$, the chemical potential still should be considered.)

Therefore, the non-perturbative mechanism does not work at low temperature for the production!

The Mechanisms for Production

- The perturbative ones:
 Dominant mechanism
 - > To produce heavy quark pairs @HEP
 - To combine into hadron 'immediately' Production @ Tevatron & LHC Production @ Z-factory (LEP-I)

To take Bc production as example below:

Production of Bc @Tevatron & LHC

Gluon-gluon fusion mechanism dominant

Subprocess: $gg \rightarrow B_c + c + \bar{b}$

36 Feynman diagrams for complete calculations
The information about the accompany
quark-jets interests experimentalists

QCD factorization:

$$\begin{split} d\sigma &= \sum_{ij} \int dx_1 \int dx_2 F^i_{H_1(P_1)}(x_1,\mu_F^2) \times F^j_{H_2(P_2)}(x_2,\mu_F^2) d\hat{\sigma}_{ij\to B_c b\bar{c}}(P_1,P_2,x_1,x_2,\mu_F^2) \\ &\simeq \sum_{ij} \int dx_1 \int dx_2 F^i_{H_1(P_1)}(x_1,\mu_F^2,\mu_R^2) \times F^j_{H_2(P_2)}(x_2,\mu_F^2,\mu_R^2) \\ &\qquad \cdot \sum_{m=4}^n \Big\{ d\hat{\sigma}^{(m)}_{ij\to B_c b\bar{c}}(P_1,P_2,x_1,x_2,\alpha_s,Q^2,\mu_F^2,\mu_R^2) \Big\} \end{split}$$

 $F_{H_1(P_1)}^i(x_1,\mu_F^2), F_{H_2(P_2)}^j(x_2,\mu_F^2)$: structure functions

 μ_R , μ_F , Q^2 : renormalization, factorization, characteristic energy scales 2017-10-27 Heavy Flavor Physics & CP Violation

The key point is the hard gluon & it can be QCD factorized as indicated by the figure.

PRD**46**, (1992) 3845; PLB**284**, (1992) 127; PRD**93** (2016) 034019

The result is that at Z⁰ peak for LEP-I several thousands of Bc may be produced per year! Considering the detecting efficiency, to observe Bc at LEP-I is on the margin.

Whereas @ Super Z-factory, there are many interesting aspects when the luminocity very and can collect a lot events!

The cross-sections of the production (around Z-pole, in pb):

× 11													
$(\sqrt{s} - m_Z) (\text{GeV})$	-5	-2.5	-1.5	-0.8	-0.4	-0.2	0	0.2	0.4	0.8	1.5	2.5	5
$\sigma(B_c, {}^1S_0)$	0.15	0.53	1.09	1.91	2.46	2.65	2.73	2.68	2.50	1.97	1.15	0.56	0.17
$\sigma(B_c^*, {}^3S_1)$	0.21	0.74	1.52	2.67	3.44	3.71	3.82	3.74	3.50	2.75	1.60	0.79	0.24
$\sigma(B_c^{**}, {}^1P_1)$	0.01	0.05	0.11	0.19	0.24	0.26	0.27	0.27	0.25	0.19	0.11	0.06	0.02
$\sigma(B_c^{**}, {}^3P_0)$	0.01	0.03	0.07	0.11	0.15	0.16	0.16	0.16	0.15	0.12	0.07	0.03	0.01
$\sigma(B_c^{**}, {}^3P_1)$	0.02	0.07	0.14	0.24	0.31	0.33	0.34	0.33	0.31	0.24	0.14	0.07	0.02
$\sigma(B_c^{**}, {}^3P_2)$	0.02	0.07	0.15	0.25	0.33	0.35	0.37	0.36	0.33	0.26	0.15	0.08	0.02

The differential cross-sections of the production @ Z-pole:

The asymmetry is due to the vector and axial vector couplings of Z-boson to fermions!

With polarized e⁺, e⁻ beams the asymmetry:

$$e_L^+ e_R^- \to B_c(B_c^*, ...) + b + \bar{c}$$

$$e_R^+ e_L^- \to B_c(B_c^*, ...) + b + \bar{c}$$

The asymmetry depends on the $\sin \theta_W$ directly and enhanced by polarized beams.

The situation for double heavy baryons (the heavy diquarks) is similar:
The asymmetry:

Therefore now we are calculating the production upto NLO of QCD! arXiv: 1701.04561

Summary & outlook

- > To study production mechanisms itself is important physics so is an interesting topic, and it can tell us where enough events can be produced for observation.
- ➤ The doubly heavy hadron production is comparatively simple than that of heavy quarkonium production.
- ➤ Doubly heavy hadron production @ hadronic colliders HLCb : Bc, \(\mathbb{E}\)cc,

The excited states,

➤ Double heavy hadron production @ e⁺e⁻ colliders The chances for Super Z-factory only: to produce enough doubly heavy hadrons for experimental study and tests of SM etc.

向C. Rubbia说明Bc介子产生的困难,需要LHC(1992)

Thanks for attention!