#### Flavor Violation and Electroweak Baryogenesis

#### Jing Shu (arXiv:1609.09849)

 $\operatorname{ITP-CAS}$ 

Oct 27, 2017

( ) < ) < )
 ( ) < )
 ( ) < )
 ( ) < )
</p>

1 / 42

Jing Shu | Oct 27, 2017

#### The Matter/Energy Budget of our Universe



Planck, 2013. Astron. Astrophys. (2014)

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

#### Cosmological Parameters from Planck

|  | Parameter                                    | Planck TT+lowP+lensing |
|--|----------------------------------------------|------------------------|
|  | $\Omega_{ m b}h^2$                           | $0.02226 \pm 0.00023$  |
|  | $\Omega_{ m c}h^2$                           | $0.1186 \pm 0.0020$    |
|  | $100\theta_{MC}$                             | $1.04103 \pm 0.00046$  |
|  | τ                                            | $0.066 \pm 0.016$      |
|  | $\ln(10^{10}A_{\rm s})$                      | $3.062 \pm 0.029$      |
|  | $n_s$                                        | $0.9677 \pm 0.0060$    |
|  | $H_0$                                        | $67.8 \pm 0.9$         |
|  | $\Omega_{\rm m}$                             | $0.308 \pm 0.012$      |
|  | $\Omega_{\rm m}^{\rm m} h^2 \dots$           | $0.1415 \pm 0.0019$    |
|  | $\Omega_{\rm m}^{-}h^3$                      | $0.09591 \pm 0.00045$  |
|  | $\sigma_8$                                   | $0.815 \pm 0.009$      |
|  | $\sigma_8\Omega_{ m m}^{0.5}\dots\dots\dots$ | $0.4521 \pm 0.0088$    |
|  | Age/Gyr                                      | $13.799 \pm 0.038$     |
|  | <i>r</i> <sub>drag</sub>                     | $147.60 \pm 0.43$      |
|  | $k_{\rm eq}$                                 | $0.01027 \pm 0.00014$  |
|  |                                              |                        |

Planck 2015 Fit of the base  $\Lambda {\rm CDM}$  at 68% CL, arxiv:1502.01582v2

#### Big Bang NucleoSynthesis



PDG 2015, Rev.Mod.Phys,88,015004

- I= ∽ < ભ \_\_\_\_5 / 42

イロト 不同下 イヨト イヨト

#### A very tiny imbalance

$$\eta = \frac{n_B}{n_\gamma} \sim 10^{-10} \qquad \rightarrow \qquad \text{Baryogenesis}$$

・ロト ・聞ト ・ヨト ・ヨト

## Sakharov Conditions for Baryogenesis, 1967

- ♦ B Violation (Electroweak Sphalerons)
- $\diamond$  C, CP Violation
- Out of equilibrium (Expansion of Universe, First-Order Phase Transition)

- $\diamond$  GUT Baryogenesis (~ 10<sup>16</sup>GeV)
- $\diamond$  Affleck-Dine mechanism
- $\Diamond$  Modified Cosmology Model
- $\diamondsuit$ Baryogenesis via Leptogenesis
- $\Diamond$  Spontaneous Baryogenesis
- $\diamondsuit$  Electroweak Baryogenesis (~ 100GeV)

A lepton-flavored Electroweak Baryogenesis scenario (arxiv:1609.09849)

- CP nature of the Higgs boson
- Flavor nature of the Higgs boson
- EDM

 $h \to \tau \mu$ 





Convential Form:

$$\begin{aligned} V_H &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c.) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left[ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + h.c. \right] \end{aligned}$$

A different form:

$$V_H = \sum_{a,b=1}^2 \mu_{ab} \Phi_a^{\dagger} \Phi_b + \frac{1}{2} \sum_{a,b,c,d=1}^2 \lambda_{ab,cd} \left( \Phi_a^{\dagger} \Phi_b \right) \left( \Phi_c^{\dagger} \Phi_d \right),$$

The Four types of 2HDM with no LFV.

| Model           | $u_R^i$  | $d_R^i$  | $e_R^i$  |
|-----------------|----------|----------|----------|
| Type I          | $\Phi_2$ | $\Phi_2$ | $\Phi_2$ |
| Type II         | $\Phi_2$ | $\Phi_1$ | $\Phi_1$ |
| Lepton-specific | $\Phi_2$ | $\Phi_2$ | $\Phi_1$ |
| Flipped         | $\Phi_2$ | $\Phi_1$ | $\Phi_2$ |

Phys.Rept.2012.02.002

To have LFV  $\rightarrow$  Couple  $e_R^i$  to both doublets

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

# How to properly define a CPV source

# ↓

# Jarlskog-like Invariant

$$V_{\rm CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Rephasing Invariant Quantities:

■ 
$$|V_{ij}|^2$$
  
■  $V_{\alpha i} V_{\beta j} V^*_{\alpha j} V^*_{\beta i} \rightarrow$  Imaginary Part corresponds to CPV

イロト イロト イヨト イヨト

# Condition 2: CPV in SM: Jarlskog Invariant



Fig. 12.2, PDG, 2014

$$J = c_1 s_1^2 c_2 s_2 c_3 s_3 \sin \delta = 3.06^{+0.21}_{-0.20} \times 10^{-5}$$
$$J' = \frac{\det[m_u^2, m_d^2]}{(100 \text{GeV})^{12}} \sim 10^{-20} \qquad \text{Not large enough!} \Rightarrow \text{New Physics}$$

Jing Shu | Oct 27, 2017

**Rephasing Invariants** 

$$Q_{\alpha i\beta j} = V_{\alpha i} V_{\beta j} V_{\alpha j}^* V_{\beta i}^*. \quad \alpha \neq \beta, \quad i \neq j, \qquad \stackrel{\text{CKM Unitarity}}{\Longrightarrow} \qquad \qquad J \equiv \text{Im}Q_{1122}$$

Jarlskog, Dunietz, Greenberg, Wu 1985.

$$\det[M_U, M_D] = 2i \left[ (m_t - m_u)(m_t - m_c)(m_c - m_u)(m_b - m_d)(m_b - m_s)(m_s - m_d) J \right]$$

Branco, Lavoura, Silva, 1999.  $(H_f \equiv M_f M_f^{\dagger})$ 

$$\operatorname{tr}([H_U, H_D]^3) = 6i \left[ (m_t^2 - m_u^2)(m_t^2 - m_c^2)(m_c^2 - m_u^2)(m_b^2 - m_d^2)(m_b^2 - m_s^2)(m_s^2 - m_d^2) J \right]$$

#### Symmetries in Type III 2HDM



#### Botella, Silva, 1995

$$J_E = \frac{1}{v^2 \mu_{12}^{\text{HB}}} \sum_{a,b,c=1}^2 v_a v_b^* \mu_{bc} \sum_{ij=\tau,\mu} (Y_c^E)_{ij} (Y_a^{E\dagger})_{ji}$$

$$\operatorname{Im} J_E = \begin{cases} \text{Gauge Basis:} -Y_{2,\tau\mu}^E \operatorname{Im} Y_{2,\tau\mu}^E & \Rightarrow & \text{Baryon Asymmetry} \\ \\ \text{Mass Basis:} & 2m_{\tau} \operatorname{Im} N_{\tau\tau}^E / v^2 & \Rightarrow & \text{CP-violating } h\bar{\tau}\tau \end{cases}$$

$$\begin{aligned} \partial_{\mu}Q_{3}^{\mu} &= \Gamma_{mt}(\xi_{T} - \xi_{Q_{3}}) + \Gamma_{t}(\xi_{T} - \xi_{H} - \xi_{Q_{3}}) + 2\Gamma_{ss}\delta_{ss}, \\ \partial_{\mu}H &= \Gamma_{t}(\xi_{T} - \xi_{H} - \xi_{Q_{3}}) + \Gamma_{\tau}(\xi_{E_{3}} - \xi_{\tau_{R}} - \xi_{H}) - 2\Gamma_{h}H, \\ \partial_{\mu}E_{3}^{\mu} &= -\Gamma_{m\tau}(\xi_{E_{3}} - \xi_{\tau_{R}}) - \Gamma_{\tau}(\xi_{E_{3}} - \xi_{\tau_{R}} - \xi_{H}) + S_{\tau_{L}}^{C/P}, \\ \partial_{\mu}\tau_{R}^{\mu} &= -\Gamma_{\tau}(\xi_{H} + \xi_{\tau_{R}} - \xi_{E_{3}}) + \Gamma_{m\tau}(\xi_{E_{3}} - \xi_{\tau_{R}}) + S_{\tau_{R}}^{C/P}, \\ \partial_{\mu}T^{\mu} &= -\Gamma_{mt}(\xi_{T} - \xi_{Q_{3}}) - \Gamma_{t}(\xi_{T} - \xi_{H} - \xi_{Q_{3}}) - \Gamma_{ss}\delta_{ss}, \\ \partial_{\mu}\mu_{R}^{\mu} &= S_{\mu_{R}}^{C/P}, \end{aligned}$$
(10)

Jing Shu | Oct 27, 2017

-

・ロト ・個ト ・モト ・モト

#### Phenomenological Implications

- $\bullet \ h \to \tau^{\pm} \mu^{\mp}$
- ${\color{black}\bullet} \ \tau \to \mu \gamma$
- EDM
- $\blacksquare$  Higgs signal strength  $h \to \bar\tau \tau$

지 아이에 이 아이에 가 아이에

## EDM, MDM and $\tau \to \mu \gamma$

 ${\rm Br}(\tau\to\mu\gamma)<4.4\times10^{-8}$ 90C.L., BaBar, PhysRevLett.104.021802

#### Two Loop:



#### One Loop:

No CPV from  $h\tau\mu$ :  $N^E_{\tau\mu}N^E_{\mu\tau} = 0$ 

<ロト < 同ト < 回ト < 回ト 三目

EDM



 $h \to \tau \tau$ 



$$-\frac{m_f}{v}\kappa_\tau(\cos\phi_\tau\bar\tau\tau+\sin\phi_\tau\bar\tau i\gamma_5\tau)h$$

Sensitivities:

LHC (PhysRevD.92.096012(2015))

| $150 {\rm fb}^{-1}$ | $500 {\rm fb}^{-1}$ | $3ab^{-1}$ |
|---------------------|---------------------|------------|
| $15^{\circ}$        | $9^{\circ}$         | 4°         |

• Higgs factories:  $\approx 4.4^{\circ}$  at 250GeV with 1ab<sup>-1</sup> PhysRevD.88.076009(2013).

3 N ( 3 N

#### Physical Implications of the Lepton-Flavored EWBG



-

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

- $\Diamond\,$  Mechanisms of Electroweak Baryogenesis is discussed.
- ♦ A Lepton flavored scenario is studied.
  - $\blacksquare$  CP-violating  $h\bar\tau\tau$  is expected from EWBG and can be probed at colliders.
  - This is correlated with discovery of  $h\tau^{\pm}\mu^{\mp}$ .
- $\Diamond\,$  More dedicated work on this subject can be interesting and important.

A B N A B N

# Thanks

<ロ> <問> <目> <目> <目> <目> <目> <のへの</p>

| Parameter                | Definition                                                                                           |
|--------------------------|------------------------------------------------------------------------------------------------------|
| <i>A</i> <sub>s</sub>    | Scalar power spectrum amplitude (at $k_* = 0.05 \mathrm{Mpc}^{-1}$ )                                 |
| <i>n</i> <sub>s</sub>    | Scalar spectral index (at $k_* = 0.05 \mathrm{Mpc}^{-1}$ , unless otherwise stated)                  |
| $dn_s/d\ln k$            | Running of scalar spectral index (at $\hat{k}_* = 0.05 \mathrm{Mpc}^{-1}$ , unless otherwise stated) |
| $d^2 n_s/d \ln k^2$      | Running of running of scalar spectral index (at $k_* = 0.05 \mathrm{Mpc}^{-1}$ )                     |
| <i>r</i>                 | Tensor-to-scalar power ratio (at $k_* = 0.05 \mathrm{Mpc}^{-1}$ , unless otherwise stated)           |
| <i>n</i> <sub>t</sub>    | Tensor spectrum spectral index (at $k_* = 0.05 \mathrm{Mpc}^{-1}$ )                                  |
| ω <sub>b</sub>           | Baryon density today                                                                                 |
| ω <sub>c</sub>           | Cold dark matter density today                                                                       |
| $\theta_{MC}$            | Approximation to the angular size of sound horizon at last scattering                                |
| τ                        | Thomson scattering optical depth of reionized intergalactic medium                                   |
| $\overline{N_{\rm eff}}$ | Effective number of massive and massless neutrinos                                                   |
| $\Sigma m_{\nu}$         | Sum of neutrino masses                                                                               |
| <i>Y</i> <sub>P</sub>    | Fraction of baryonic mass in primordial helium                                                       |
| $\Omega_K$               | Spatial curvature parameter                                                                          |
| <i>w</i> <sub>de</sub>   | Dark energy equation of state parameter (i.e., $p_{de}/\rho_{de}$ ) (assumed constant)               |

Table 1. Primordial, baseline, and optional late-time cosmological parameters.

Planck 2015, arxiv:1502.02114

・ロト ・聞ト ・ヨト ・ヨト

- $\Diamond$  Local chemical equilibrium.
- $\Diamond\,$  Neglect weak sphaleron interactions in transport equations.
- $\Diamond\,$  Local Baryon number conservation.
- $\Diamond\,$  Weak interactions are in thermal equilibrium.
- $\Diamond$  Chemical equilibrium for strong sphaleron interactions.

- ♦ Mechanisms of Electroweak Baryogenesis
  - $\diamond$  Why going beyond the SM ?
- $\Diamond$  Example: Lepton-Flavored Electroweak Baryogenesis
- $\diamondsuit$  Gravitational Waves from Electroweak Phase Transition

#### Condition 1: The Anomalous Baryonic Current

Anomalies: ( $\pi^0 \to \gamma \gamma \Rightarrow$  Adler, 1969; Bell and Jackiw 1969; Fujikawa 1979.)

$$\partial_{\mu}J^{\mu}_{B_{L}+L_{L}} = \frac{n_{f}g^{2}}{32\pi^{2}}\epsilon_{\alpha\beta\gamma\delta}W^{\alpha\beta}_{a}W^{\gamma\delta}_{a}$$

$$B(t_f) - B(t_i) = \int_{t_i}^{t_f} \int d^3x \left[ n_f \frac{g^2}{32\pi^2} W_{\mu\nu} \widetilde{W}^{a\mu\nu} \right]$$

$$\Delta B = n_f [N_{CS}(t_f) - N_{CS}(t_i)]$$

イロト イタト イヨト イヨト 油

#### Condition 1: The n-Vacua and Sphalerons

Instanton ('t Hooft 1976) mediated tunnelling rate:  $e^{-\frac{8\pi^2}{g^2}}\approx 10^{-173}$ 



Saddle point solution, Sphalerons (Manton, 1983).

Sphaleron Energy: 
$$E = (1.6 \sim 2.7) \times \frac{4\pi v}{g}$$

Rate unsuppressed at high T

Jing Shu | Oct 27, 2017

#### Condition 1: Sphaleron Rate in SM



Lattice result,  $T_C = (159.5 \pm 1.5) \text{GeV}$ , Phys.Rev.Lett,113, 141602 (2014).

$$\Gamma^{\rm sym} \approx 6 \times (18 \pm 3) \alpha_W^5 T^4, \qquad \Gamma^{\rm brok} \sim T^4 {\rm exp}(-\frac{E_{\rm sph}}{T})$$

#### Jing Shu | Oct 27, 2017

# Condition 2: CPV in SM: the CKM Matrix

$$V_{\text{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

42

\*ロト \*個ト \*注ト \*注ト

#### Condition 2: CPV: Electric Dipole Moments



J. Engel et al. Progress in Particle and Nuclear Physics 71 (2013) 2174

# Condition 2: CPV: EDM Experimental Status

| System                | Present 90% C.L.          | Sensitivity goal <sup>b</sup>  | Group              | SM CKM (e fm) <sup>c</sup>                      |
|-----------------------|---------------------------|--------------------------------|--------------------|-------------------------------------------------|
|                       | Limit (e fm) <sup>a</sup> |                                |                    |                                                 |
| Cs                    | $1.2 \times 10^{-10}$     |                                | [169]              | ~10 <sup>-23</sup>                              |
| Tl                    | $9.5 \times 10^{-12}$     |                                | [170]              | $\sim 10^{-22}$                                 |
| YbF <sup>d</sup>      | $10.5 \times 10^{-15}$    |                                | [152]              | $\sim 10^{-19}$                                 |
| ThO <sup>d</sup>      | -                         | $10^{-15}  ightarrow 10^{-17}$ |                    |                                                 |
| n                     | $2.7 \times 10^{-13}$     |                                | [171]              | $1.6\times10^{-18}\rightarrow1.4\times10^{-20}$ |
| n                     |                           | $(1-3) \times 10^{-14}$        | CryoEDM            |                                                 |
| n                     |                           | $4 \times 10^{-15}$            | nEDM/SNS           |                                                 |
| n                     |                           | $5 \times 10^{-14}$            | nEDM/PSI           |                                                 |
| n                     |                           | $5 \times 10^{-15}$            | n2EDM/PSI          |                                                 |
| n                     |                           | $2 \times 10^{-15}$            | nedm/FRM-II Munich |                                                 |
| n                     |                           | $10^{-14} - 10^{-15}$          | TRIUMF             |                                                 |
| р                     |                           | 10 <sup>-16</sup>              | srEDM              |                                                 |
| <sup>199</sup> Hg     | $2.6 \times 10^{-16}$     | $(2.6-5) \times 10^{-17}$      | [172]              | -                                               |
| <sup>225</sup> Ra     |                           | $(10 - 100) \times 10^{-15}$   | Argonne            | -                                               |
| <sup>221/223</sup> Rn |                           | $1.3 \times 10^{-14}$          | TRIUMF             | -                                               |
| <sup>221/223</sup> Rn |                           | $2 \times 10^{-15}$            | FRIB               | -                                               |
| <sup>129</sup> Xe     | $5.5 	imes 10^{-14}$      |                                | [173]              | -                                               |

J. Engel et al. Progress in Particle and Nuclear Physics 71 (2013) 2174

#### Condition 3: Electroweak Phase Transition



Strongly first order EWPT.

- Bubble Nucleation
- Bubble Expansion
- Bubble Percolation

# Condition 3: EWPT: Effective Potential

$$\begin{split} V_{\text{eff}}^{T}(\phi) &= V_{\text{eff}}^{T=0}(\phi) + \frac{T^{4}}{2\pi^{2}} [\sum_{\text{scalars}} J_{B}(\frac{M^{2}}{T^{2}}) + 3\sum_{\text{gauge}} J_{B}(\frac{\mu^{2}}{T^{2}}) \\ &- \sum_{\text{gauge}} J_{B}(\frac{\xi\mu^{2}}{T^{2}}) - 4\sum_{\text{fermions}} n_{C}^{f} J_{F}(\frac{m_{f}^{2}}{T^{2}})]. \end{split}$$

?  $\xi$ : gauge-fixing parameter

イロト 不得下 不同下 不同下

## Condition 3: EWPT: Analytical Treatment

$$V(\phi, T) = D(T^2 - T_0^2)\phi^2 - ET\phi^3 + \frac{\lambda(T)}{4}\phi^4,$$



#### • $\xi$ -independent

イロト 不得下 イヨト イヨト

#### Condition 3: Incapability of first order EWPT in SM

| Lattice        | Authors | $M_h^C$ (GeV)  |
|----------------|---------|----------------|
| 4D Isotropic   | [71]    | $80\pm7$       |
| 4D Anisotropic | [69]    | $72.4 \pm 1.7$ |
| 3D Isotropic   | [67]    | $72.3\pm0.7$   |
| 3D Isotropic   | [65]    | $72.4\pm0.9$   |

Morrissey, Ramsey-Musolf, New Journal of Physics, 14,125003(2012)



 $T\approx 100 {\rm GeV}\approx 10^{15} {\rm K}$ 



Gravitational Waves (mHz level), LISA, Taiji, TianQin, DECIGO

《曰》 《問》 《曰》 《曰》 코曰

 Diffusion enhances baryon asymmetry generation. (Cohen, Kaplan, Nelson, Phys.Lett.B336(1994)41)
 Non-Local vs Local

 Closed-Time-Path(CTP) Formalism (Riotto, PRD58 (1998) 095009, Lee, Cirigliano, Ramsey-Musolf, PRD71,075010(2005))
 Resonant Enhancement

(日本)(周本)(日本)(本田本)(日本)

#### Transport Equations

$$\begin{aligned} \frac{\partial n}{\partial X_0} + \nabla \cdot \vec{j}(X) &= -\int d^3 z \int_{-\infty}^{X_0} dz_0 \operatorname{Tr} \Big[ \Sigma^{>}(X,z) S^{<}(z,X) - S^{>}(X,z) \Sigma^{<}(z,X) + S^{<}(X,z) \Sigma^{>}(z,X) - \Sigma^{<}(X,z) S^{>}(z,X) \Big] \end{aligned}$$



 $n_B$  is a constant in the broken phase

 $4\overline{2}$