Determination of spin and parity of Zc（3900）

Ping Ronggang

Institute of High Energy Physics，CAS
（For BESIII collaboration）

全国第十五届重味物理与CP破坏研讨会，武汉，华中师大

Outline:

- Introduction
- Data sets
- Amplitude construction
-Partial wave analysis results
-Systematic uncertainties
-Summary

Beijing Electron Positron Collider (BEPC)

beam energy: $1.0-2.3 \mathrm{GeV}$

2004: started BEPCII upgrade, BESIII construction
2008: test run
2009 - now: BESIII physics run

- 1989-2004 (BEPC):
$L_{\text {peak }}=1.0 \times 10^{31} / \mathrm{cm}^{2} \mathrm{~s}$
- 2009-now (BEPCII):
$\mathrm{L}_{\text {peak }}=0.85 \times 10^{33} / \mathrm{cm}^{2} \mathrm{~s}$

BESIII Detector

CsI(TI) EMC

Crystals: $28 \mathrm{~cm}\left(15 \mathrm{X}_{0}\right)$ Barrel: |cos $\theta \mid<0.83$

Endcap:

$$
0.85<|\cos \theta|<0.93
$$

TOF
BTOF: two layers
ETOF: 48 scintillators for each
MRPC --- new ETOF

BESIII data samples

```
2009: 106M \psi(2S)
    225M J/\psi
2010: }975\mp@subsup{\textrm{pb}}{}{-1}\mathrm{ at }\psi(3770
2011: }2.9\mp@subsup{\textrm{fb}}{}{-1}\mathrm{ at }\psi(\mathbf{3770) (total)
    482 pb-1 at 4.01 GeV
2012:0.45B \psi(2S) (total)
    1.3B J/\psi (total)
2013: }1092\mp@subsup{\textrm{pb}}{}{-1}\mathrm{ at 4.23 GeV
        826 pb-1 at 4.26 GeV
        540 pb-1 at 4.36 GeV
        ~50 pb-1 at 3.81, 3.90, 4.09, 4.19, 4.'
            4.22, 4.245, 4.31, 4.39, 4.42 GeV
2014: }1029\mp@subsup{\textrm{pb}}{}{-1}\mathrm{ at 4.42 GeV
        110 pb-1 at 4.47 GeV
        110 \mp@subsup{\textrm{pb}}{}{-1}\mathrm{ at 4.53 GeV}
        48 p\mp@subsup{b}{}{-1}}\mathrm{ at 4.575 GeV
        567 \mp@subsup{\textrm{pb}}{}{-1}\mathrm{ at 4.6 GeV}
        0.8 fb-1 R-scan from 3.85 to 4.59 GeV (104 points)
2015: R-scan from 2-3 GeV + 2.175 GeV data
2016: ~3fb-1 at 4.18 GeV (for Dc) .JUST COMPLETED
2017. 500/pb each for }7\mathrm{ energy points between 4.19~4.28 GeV
    400/pb around chic_c1
    200/pb around X(3872)

\section*{New forms of hadron}

■ Conventional hadrons consist of 2 or 3 quarks:
Naive Quark Model:

\section*{meson}

a
(a)
q baryon
- QCD predicts the new forms of hadrons:
- Multi-quark states : Number of quarks >=4

- Hybrids: qव̄g, qqqg ...
- Glueballs: gg, ggg ...


\section*{Observation of Zc(3900)}

\[
\begin{aligned}
& \mathrm{Z}_{\mathrm{c}}(3900)^{+}: \quad \mathrm{J}^{\mathrm{P}}=? \\
& m=(3899.0 \pm 3.6 \pm 4.9) \mathrm{MeV} / c^{2} \\
& \Gamma=(46 \pm 10 \pm 20) \mathrm{MeV}
\end{aligned}
\]

Mass close to \(D \bar{D}^{*}\) threshold
Decays to \(J / \psi \rightarrow\) contains \(c \bar{C}\) Electric charge \(\rightarrow\) contains \(u \bar{d}\)
\(\sigma\left[e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi\right]=62.9 \pm 1.9 \pm 3.7 \mathrm{pb}\) at 4.26 GeV
\(\frac{\sigma\left[e^{+} e^{-} \rightarrow \pi^{ \pm} Z_{c}(3900)^{\mp} \rightarrow \pi^{+} \pi^{-} J / \psi\right]}{\sigma\left[e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi\right]}=(21.5 \pm 3.3 \pm 7.5) \%\) at 4.26 GeV
CLEOc data at 4.17 GeV (PLB 727,366)


\section*{Overview Zc states from BESIII}


\[
Z_{c}(4025)^{ \pm}: e^{+} e^{-} \rightarrow \pi^{ \pm}\left(D^{*} \bar{D}^{*}\right)^{\mp}
\]


- Theoretical investigation on \(\mathrm{Z}_{\mathrm{c}}(3900)\)

Tetraquarks: PRD85, 054011 (2012), PRD87, 111102 (2013), JHEP 1307, 153 (2013), arXiv: 1304.1301
Hadronic molecules: PRD88, 054007 (2013), PL B726, 326 (2013), JPG41, 075003 (2014)
Meson loop: PRL 111, 132003 (2013), EPJ C73, 2621 (2013)
ISPE model: PRD88, 025021 (2013)
- More experimental information desired
(i) establishing the spin and parity of \(Z_{c}(3900)\);
(ii) a search for a peak around 4030 MeV in the \(\pi J / \psi\) invariant mass spectrum in the process \(Y(4260) \rightarrow\)
M. B. Voloshin, PRD87, 091501 (2013) \(\pi \pi J / \psi\);
(iii) a measurement of the branching fraction for decays of \(Z_{\underline{c}}(3900)\) into heavy meson pairs, \(Z_{c} \rightarrow D^{*+} \bar{D}^{0}\), \(D^{+} \bar{D}^{* 0}\);
(iv) a measurement of the rate of the decay \(Z_{c}(3900) \rightarrow\) \(\pi \psi^{\prime}\) relative to that of \(Z_{c}(3900) \rightarrow \pi J / \psi\);
(v) a search for the decays \(Z_{c}(3900) \rightarrow \pi h_{c}\) and \(Z_{c} \rightarrow \rho \eta_{c}\).

\section*{Consistency of \(\mathrm{Zc}(3900)\) at 4.23 and 4.26 GeV}


- Total \(\sim 6,000\) events ( 4,400 at \(4.23 \mathrm{GeV}, 2,400\) at 4.26 GeV )
- Zc peak consistent at two energy point
- \(\quad \sigma\) and \(f_{0}(980)\) significantly observed
- Two pion spectrum above 1 GeV shows difference.

\section*{Amplitude construction}

(a): \(A_{1}\left(\lambda_{0}, \lambda_{2}\right)=\sum_{\lambda_{1}, j} F_{\lambda_{1}, \lambda_{2}}^{Y}\left(r_{1}\right) D_{\lambda_{0}, \lambda_{1}-\lambda_{2}}^{1 *}\left(\theta_{0}, \phi_{0}\right) B W_{j}\left(m_{\pi^{+} \pi^{-}}\right) F_{0,0}^{R_{j}}\left(r_{2}\right) D_{\lambda_{1}, 0}^{J_{1} *}\left(\theta_{1}, \phi_{1}\right)\),
(b): \(A_{2}\left(\lambda_{0}, \lambda_{2}\right)=\sum_{\lambda_{1}, j} F_{\lambda_{1}, 0}^{Y}\left(r_{1}\right) D_{\lambda_{0}, \lambda_{1}}^{1 *}\left(\theta_{0}, \phi_{0}\right) B W_{j}\left(m_{J / \psi \pi}\right) \sum_{\lambda_{2}^{\prime}} F_{\lambda_{2}^{\prime}, 0}^{Z_{c}}\left(r_{2}\right) D_{\lambda_{1}, \lambda_{2}^{\prime}}^{J_{1} *}\left(\theta_{1}, \phi_{1}\right) d_{\lambda_{2}^{\prime}, \lambda_{2}}^{1}\left(\tilde{\theta}_{2}\right)\),
\(d_{\lambda_{2}^{\prime}, \lambda_{2}}^{1}(\tilde{\theta}):\) to align the \(\mathrm{J} / \psi\) momentum to that from \(\gamma^{*}\)
\[
F_{\lambda, \nu}=\sum_{l S} g_{l S} \sqrt{\frac{2 l+1}{2 J+1}}\langle l 0 S \delta \mid J \delta\rangle\langle s \lambda \sigma-\nu \mid S \delta\rangle r^{l} \frac{B_{l}(r)}{B_{l}\left(r_{0}\right)}
\]

See Refs. 1 S. U. Chung, Phys. Rev. D57, 431 (1998);
See Refs. 2 S. U. Chung, Phys. Rev. D48, 1225 (1993).

PRL,115,072001.
PRD88,074026
PRD95,076010

\section*{Study Zc as J \({ }^{\mathrm{P}}=\mathbf{1}^{+}\)state}
- Baseline solution
\[
\pi \pi-\mathrm{S} \text { wave }\left[\sigma, f_{0}(980), f_{0}(1370)\right], \pi \pi-\mathrm{D} \text { wave }\left[f_{2}(1270)\right], Z_{\mathrm{c}}(3900)^{ \pm}
\]
- \(f_{0}(980)\) line shape parameterized with Flatte function
- \(Z_{\text {c }}\) lineshape parameterized with Flatte-like function
\[
B W(s)=\frac{1}{s-M^{2}+i\left(g_{1}^{\prime} \rho_{\pi J / \psi}(s)+g_{2}^{\prime} \rho_{D^{*} D}(s)\right)},
\]
- \(Z_{\mathrm{c}}{ }^{+}\)and \(Z_{\mathrm{c}}{ }^{+}\)assumed as isospin partner
- Simultaneous fit to data, background subtracted from data \(\ln L\)

The fitted mass, \(g_{1}^{\prime}, g_{2}^{\prime} / g_{1}^{\prime}\) and \(-\ln L\) for the \(Z_{c}\) resonance.
\begin{tabular}{lcccc}
\hline \hline\(Z_{c}: J^{P}\) & \(\mathrm{M}(\mathrm{MeV})\) & \(g_{1}^{\prime}\left(\mathrm{GeV}^{2}\right)\) & \(g_{2}^{\prime} / g_{1}^{\prime}\) & \(-\ln L\) \\
\hline \(1^{+}\) & \(3901.5 \pm 2.7\) & \(0.075 \pm 0.006\) & \(27.1 \pm 2.0\) & -1599.1 \\
\hline
\end{tabular}

- Fit quality check of Dalitz plots
\(\chi^{2} /\) ndf: \(1.3(4.23 \mathrm{GeV}), 1.2(4.26 \mathrm{GeV})\)
- \(Z_{c}\) pole mass and with:
\[
M_{\text {pole }}=3881.2 \pm 4.2 \pm 52.7 \mathrm{MeV}, \Gamma_{\text {pole }}=51.8 \pm 4.6 \pm 36.0 \mathrm{MeV}
\]
- Data disfavor constant width Breit-Wigner parametrization of \(Z_{c}\)
\[
M=\left(3897.6 \pm 1.2_{\text {satat }}\right) \mathrm{MeV}, \Gamma=\left(43.5 \pm 1.5_{\text {sata }}\right) \mathrm{MeV}
\]
\(-\ln L\) increases by 22 with \(\Delta(\) ndf \()=1\)
- Helicity amplitudes for \(Z_{\mathrm{c}}\) production and decays
\[
\begin{array}{rlrl}
\text { For e }^{+} \mathrm{e}^{-} \rightarrow Z_{c}^{ \pm} \pi^{\mp}, & \text { For } Z_{c}^{ \pm} \rightarrow J / \psi \pi^{ \pm}: \\
\left\lvert\, \begin{aligned}
\left|F_{1,0}^{Z c}\right|^{2} /\left|F_{0,0}^{Z c}\right|^{2} & =0.22 \pm 0.05_{\text {stat }} \text { at } 4.23 \mathrm{GeV} & \\
& =0.21 \pm 0.11_{\text {stat }} \text { at } 4.26 \mathrm{GeV} & \left|F_{1,0}^{\psi}\right|^{2} /\left|F_{0,0}^{\psi}\right|^{2}=0.45 \pm 0.15_{\text {stat }}
\end{aligned}\right.
\end{array}
\]
- \(\pi \pi-\mathrm{S}\) wave dominates the process

Fraction: \(\left(61.7 \pm 2.1_{\text {stat. }}\right) \%\) at 4.23 GeV ,
\(\left(71.4 \pm 4.1_{\text {stat }}\right) \%\) at 4.26 GeV
- Signal yields for \(Z_{\mathrm{c}}\left(1^{+}\right)\)
\[
N_{Z_{c}^{ \pm}}=952.3 \pm 39.3_{\text {stat }} \text { at } 4.23 \mathrm{GeV}, 343.3 \pm 23.3_{\text {stat }} \text { at } 4.26 \mathrm{GeV}
\]
- Born cross section for \(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow Z_{c}^{+} \pi^{-}+c . c \rightarrow \pi^{+} \pi^{-} J / \psi\)
\(\left(21.8 \pm 1.0_{\text {stat }} \pm 4.4_{\text {sys }}\right) \mathrm{pb}\) at 4.23 GeV
\(\left(11.0 \pm 1.2_{\text {stat }} \pm 5.4_{\text {sys }}\right) \mathrm{pb}\) at 4.26 GeV
- Significance for \(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow Z_{c}^{+}(4020) \pi^{-}+c . c \rightarrow \pi^{+} \pi^{-} J / \psi\) is \(\sim 3 \sigma\).
\begin{tabular}{cc}
\(\sqrt{s}=4.23 \mathrm{GeV}\) & 4.26 GeV \\
\hline\(\left(0.2 \pm 0.1_{\text {stat }}\right) \mathrm{pb}\), & \(\left(0.8 \pm 0.4_{\text {stat }}\right) \mathrm{pb}\) \\
\(<0.9 \mathrm{pb} @ 90 \%\) C.L. & \(<1.4 \mathrm{pb} @ 90 \%\) C.L.
\end{tabular}

\section*{Check other spin-parity numbers for \(Z_{c}\)}




4.26 GeV

\title{
 \\  \\ \(\mathrm{J}^{\mathrm{P}}=1^{-}\) \\ \(\sqrt{s}=\) \\ 4.23 GeV
}


4.26 GeV





\section*{Comparison of fit results with different \(\mathrm{J}^{\mathrm{P}}\) for \(Z_{c}\)}

■ Mass, \(\mathrm{g}_{1}{ }^{\prime}\) and Log-likelihood
\begin{tabular}{lcccc}
\hline \hline\(Z_{c}: J^{P}\) & \(\mathrm{M}(\mathrm{MeV})\) & \(g_{1}^{\prime}\left(\mathrm{GeV}^{2}\right)\) & \(g_{2}^{\prime} / g_{1}^{\prime}\) & \(-\ln L\) \\
\hline \(0^{-}\) & \(3899.7 \pm 2.1\) & \(0.079 \pm 0.005\) & \(25.8 \pm 2.9\) & -1491.6 \\
\(1^{-}\) & \(3901.1 \pm 1.8\) & \(0.063 \pm 0.005\) & \(24.1 \pm 2.3\) & -1434.4 \\
\(1^{+}\) & \(3901.5 \pm 2.7\) & \(0.075 \pm 0.006\) & \(27.1 \pm 2.0\) & -1599.1 \\
\(2^{-}\) & \(3900.9 \pm 1.6\) & \(0.060 \pm 0.004\) & \(25.3 \pm 2.4\) & -1464.6 \\
\(2^{+}\) & \(3893.6 \pm 1.6\) & \(0.051 \pm 0.005\) & \(25.3 \pm 2.9\) & -1369.5 \\
\hline \hline
\end{tabular}
- \(Z_{\mathrm{c}}\) favors the quantum number \(\mathrm{J}^{\mathrm{P}}=1^{+}\)

If \(Z_{c}\) is assigned as \(0^{-}\), the fit quality gets worse by about \(\Delta(\operatorname{LnL})\) \(=107.5\). To figure out the \(Z_{c}\) quantum numbers, the information on the statistical significance is desirable.

\section*{Angular distributions for different \(\mathrm{J}^{\mathrm{P}}\) within Zc mass region}

- Events in the \(Z_{\mathrm{c}}\) mass region \(\mathrm{M}_{\pi \mathrm{J} / \psi} \in(3.86,3.92) \mathrm{GeV}\)
- Background events substrated
- \(\theta_{\mathrm{Zc}}\) : the polar angle of \(\mathrm{Zc}, \theta_{\mathrm{J} / \psi}\) : helicity angle of \(\mathrm{J} / \psi\)
- data favors the spin-parity \(1^{+}\)for \(Z_{c}\)

\section*{Statistical significance for the \(Z_{c}\) as \(1^{+}\)state}
- Test two hypothesises

\section*{Null hypothesis \(\mathrm{H}_{0}\) :}
data described with \(\left[\sigma_{0}, \mathbf{f}_{0}(980), \mathbf{f}_{2}(1270), \mathbf{f}_{0}(1370), \mathbf{Z c}\left(\mathbf{J}^{\mathbf{p}} \neq 1^{+}\right)\right]\)

\section*{Alternative hypothesis \(\mathbf{H}_{1}\) :}
data described with \(\left[\sigma_{0}, \mathbf{f}_{0}(980), \mathbf{f}_{2}(1270), \mathbf{f}_{0}(1370), \mathbf{Z c}\left(1^{+}\right)\right.\), other \(\left.\mathbf{Z c}\left(\mathbf{J}^{\mathbf{P}} \neq 1^{+}\right)\right]\)
Significance to distinguish the quantum number \(1^{+}\)over other quantum numbers.
\begin{tabular}{crrr}
\hline \hline Hypothesis & \(2 \Delta(-\ln L)\) & \(\Delta(n d f)\) & significance \\
\hline \(1^{+}\)over \(0^{-}\) & 94.0 & \(4 \times 2+5\) & \(7.6 \sigma\) \\
\(1^{+}\)over \(1^{-}\) & 158.3 & \(4 \times 2+5\) & \(10.8 \sigma\) \\
\(1^{+}\)over \(2^{-}\) & 151.9 & \(4 \times 2+5\) & \(10.5 \sigma\) \\
\(1^{+}\)over \(2^{+}\) & 96.0 & \(4 \times 2+5\) & \(7.7 \sigma\) \\
\hline
\end{tabular}

\section*{Systematic uncertainties}
- Luminosity, tracking, lineshape, kinematic fit and branching fraction, and PWA
\begin{tabular}{lrccrr}
\hline \hline Sources & \(M_{Z_{c}}\) & \(g_{1}^{\prime} \times 10^{3}\) & \(g_{2}^{\prime} / g_{1}^{\prime}\) & \(N_{Z_{c}}^{\mathrm{I}}(\%)\) & \(N_{Z_{c}}^{\mathrm{II}}(\%)\) \\
\hline Event selection & 1.8 & \(\ldots\) & \(\ldots\) & 4.8 & 4.8 \\
\(\sigma\) line shape & 19.5 & 12.0 & 0.3 & 2.5 & 31.0 \\
\(Z_{c}\) parametrization & 3.9 & \(\ldots\) & \(\ldots\) & 15.5 & 7.9 \\
Backgrounds & 13.9 & 8.0 & 0.1 & 1.9 & 9.3 \\
\(f_{0}(980), g_{1}, g_{2} / g_{1}\) & 17.5 & 14.0 & 0.6 & 2.4 & 24.6 \\
\(f_{0}(1370)\) & 16.7 & 11.0 & 0.4 & 11.5 & 14.0 \\
Barrier radius & 7.9 & 2.0 & 1.7 & 0.5 & 12.9 \\
\(Z_{c}\) mass resolution & 1.0 & 2.0 & \(\ldots\) & 0.4 & 0.5 \\
Nonresonance & 14.3 & 9.0 & 0.0 & 0.1 & 18.0 \\
Total & 38.0 & 24.8 & 1.9 & 20.3 & 49.2 \\
\hline \hline
\end{tabular}

\section*{Comments from PRL referees and editor}

\section*{■ Comments from PRL referees arXiv:1706.04100}

The BESIII collaboration has an excellent track record in the field of spectroscopy in the sector of charmonia and charmonium-like mesons.....

Using partial-wave analyses, spin and parity of one of the charged states containing a pair of charm-anticharm and, thus, exhibiting a structure that cannot be reduced to simple quarkantiquark dynamics are addressed.

This is a very important contribution in view of the ongoing discussion of the nature of these puzzling states.

Besides mass, width, and production cross sections, open questions remained, and in particular spin and parity are crucial properties to know in order to understand the structure of this and make connections to other observations. The present paper unambiguously answers this question, by ruling out other than the \(1+\) spin-parity assignment with significances exceeding seven standard deviations.

The measurement will undoubtedly trigger a significant number of phenomenological publications.
－Selected as Physics synopsis by the PRL Journal
Determination of the Spin and Parity of the \(\mathrm{Zc}(3900)\) ，M．Ablikim et al． （BESIII Collaboration），Phys．Rev．Lett．119， 072001 －Published 16 August 2017

Physics synopsis：
https：／／physics．aps．org／synopsis－for／10．1103／PhysRevLett．119．072001

\section*{Synopsis：Filling in a Tetraquark＇s Profile}

August 16， 2017
An analysis of electron－positron collision data has determined the spin and parity of a particle thought to consist of four quarks．

－高能物理研究所／2017高能新闻 \(\mathrm{Zc}(3900)\) 的自旋和宇称量子数确立

\section*{Summary}
- \(Z_{c}\) spin parity are studied with \(1.92 \mathrm{pb}^{-1}\) data taken at 4.23 and 4.26 GeV , the data suggests \(\mathrm{J}^{\mathrm{P}}=1^{+}\)with statistical significance larger than \(7 \sigma\) over other quantum numbers, e.g. \(0^{-}, 1^{-}, 2^{+}\)and \(2^{-}\).
- If \(\mathrm{Z}_{c}\) is parameterized with a Flatte-like formula \(M_{\text {pole }}=(3881.2 \pm 4.2 \pm 52.7) \mathrm{MeV}, \Gamma_{\text {pole }}=(51.8 \pm 4.6 \pm 36.0) \mathrm{MeV}\)
- Born cross section for \(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow Z_{c}^{+} \pi^{-}+c . c \rightarrow \pi^{+} \pi^{-} J / \psi\)
\(\left(21.8 \pm 1.0_{\text {stat }} \pm 4.4_{\text {syst }}\right) \mathrm{pb}\) at 4.23 GeV
\(\left(11.0 \pm 1.2_{\text {satt }} \pm 5.4_{\text {syst }}\right) \mathrm{pb}\) at 4.26 GeV
- Significance for \(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow Z_{c}^{+}\)(4020) \(\pi^{-}+c . c \rightarrow \pi^{+} \pi^{-} J / \psi\) is \(\sim 3 \sigma\).

Upper limits of cross section at \(90 \%\) C.L.:
0.9 pb (at 4.23 GeV ), 1.4 pb (at 4.26 GeV )
- Ongoing partial wave analyses
\(e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} J / \psi:\)
determine the \(\mathrm{J}^{\mathrm{P}}\) of \(\mathrm{Zc}(3900)^{ \pm}\)and its cross section \(e^{+} e^{-} \rightarrow \pi^{ \pm}\left(D \bar{D}^{*}\right)^{\mp}:\)
determine the \(\mathrm{J}^{\mathrm{P}}\) of \(\mathrm{Zc}(3885)^{\mp}\) and its cross section \(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{c}:\)
determine the \(\mathrm{J}^{\mathrm{P}}\) of \(\mathrm{Zc}(4020)^{ \pm} / \mathrm{Zc}(4025)\) and its cross section \(e^{+} e^{-} \rightarrow \pi^{ \pm}\left(D^{*} \bar{D}^{*}\right)^{\mp}\) :
determine the \(\mathrm{J}^{\mathrm{P}}\) of \(\mathrm{Zc}(4025)^{\mp}\) and its cross section

\section*{Thanks for your attention!}```

