

Rare B Decays at CMS

Geng CHEN Peking University

 $Oct 28^{th}, 2017$

HFCPV-2017 @Wuhan

Outline

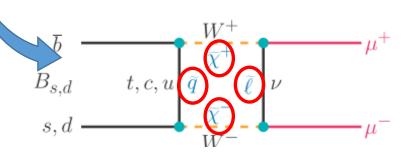
✤Introduction

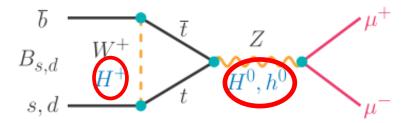
*****Rare B-decay anomalies

Logical possible BSM models

CMS rare B-decay analyses

 \blacktriangleright Angular analysis of the decay: ${\rm B}^{0} \rightarrow {\rm K}^{*0} \mu^{+} \mu^{-}$


→ Rare decay search: $B^0_{(s,d)} \rightarrow \mu^+ \mu^-$


Summary

Introduction

- ➢Rare decays are ideal playground for indirect searches for New Physics (NP). FCNC (Flavour-changing neutral current) transitions are forbidden at tree level in the SM, but can be described by box and penguin diagrams. BSM particles can contribute in loops processes.
- ➢If these particles cannot be observed in the direct searches, this is the place one shall still look for!

Interestingly, rare B decays do show numerous intriguing anomalies.

FCNC processes $b \to (X)\mu^+\mu^-$

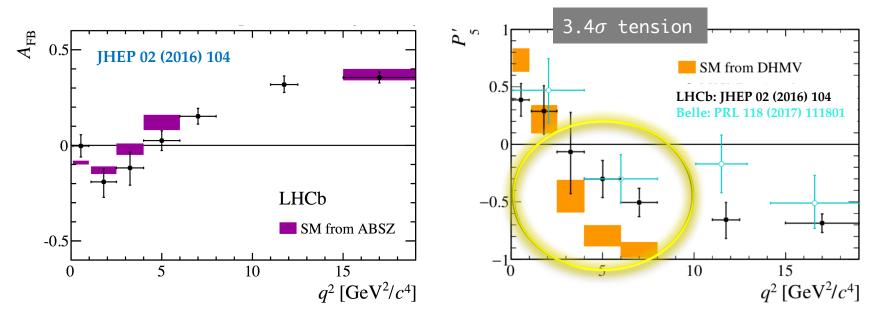
>Clean experiment signature; robust theory calculation; high sensitivity.

✓ Effective theory: model independent descriptions

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\text{tb}} V_{\text{tq}}^* \sum_i \underbrace{\mathcal{C}_i \mathcal{O}_i}_{i} + \underbrace{\mathcal{C}'_i \mathcal{O}'_i}_{i} + \sum \frac{c}{\Lambda_{\text{NP}}^2} \mathcal{O}_{\text{NP}}$$
 $i = 1, 2$ Tree
 $i = 3 - 6, 8$ Gluon penguin
 $i = 7$ Photon penguin
 $i = 9, 10$ EW penguin
 $i = S, P$ (Pseudo)scalar penguin

✓ Different processes have sensitivities to different operators

 $\begin{array}{cccc} & & & B_{s,d} \to X_{s,d}\mu^+\mu^- & B_{s,d} \to \mu^+\mu^- & B_{s,d} \to X_{s,d}\gamma \\ \\ & \mathcal{O}_7 \sim m_b(\bar{s}_L \sigma^{\mu\nu} b_R) F_{\mu\nu} & \checkmark & \checkmark & \checkmark \\ & \mathcal{O}_9 \sim (\bar{s}_L \gamma^\mu b_L) (\bar{\ell} \gamma_\mu \ell) & \checkmark & \checkmark & \\ & \mathcal{O}_{10} \sim (\bar{s}_L \gamma^\mu b_L) (\bar{\ell} \gamma_5 \gamma_\mu \ell) & \checkmark & \checkmark & \checkmark & \\ & \mathcal{O}_{5,P} \sim (\bar{s}b)_{5,P} (\bar{\ell}\ell)_{5,P} & (\checkmark) & \checkmark & \checkmark & \end{array}$

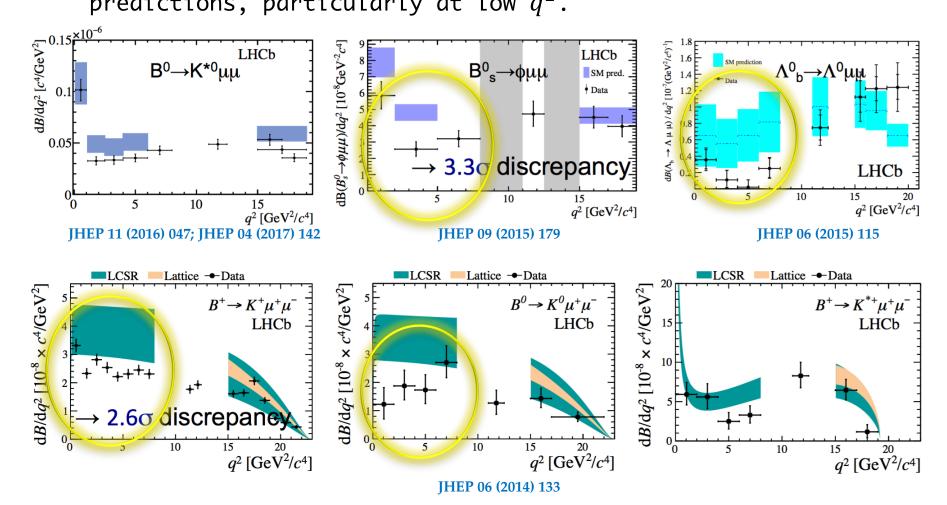

HFCPV-2017 @Wuhan

Rare B-decay anomalies : P'_5

$\succ b \rightarrow s \ \mu^+ \mu^-$ anomalies

JHEP 01 (2013) 048, JHEP 1204 (2012) 104, JHEP 01 (2009) 019

✓ B → $K^*\mu^+\mu^-$ angular observables, in SCET/QCD factorization can reduce to just two form-factors, can then construct ratios of observables which are independent of form-factors at LO.

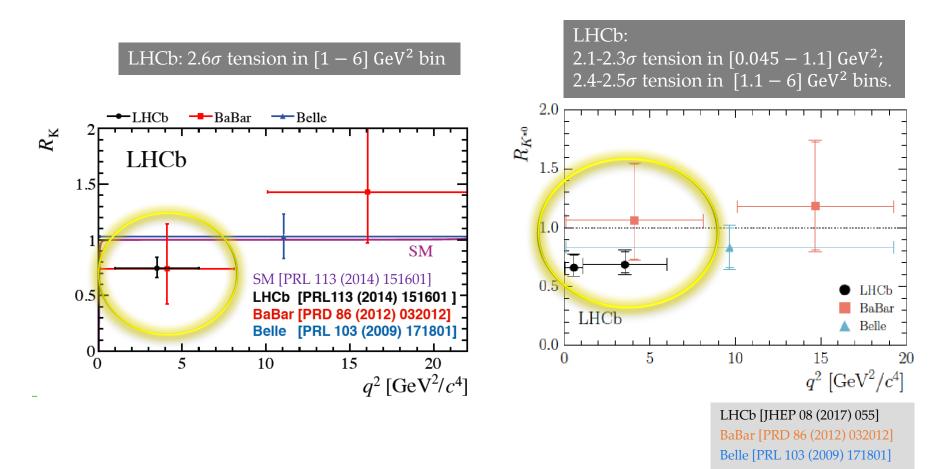

✓ Form-factor dependent A_{FB} hints at a trend, but is consistent with SM. ✓ Form-factor "independent" P'_5 has a local discrepancy in two bins.

 \rightarrow 3.4 σ discrepency with the vector coupling $\Delta C_9 = -1.04 \pm 0.25$.

Rare B-decay anomalies : branching fraction

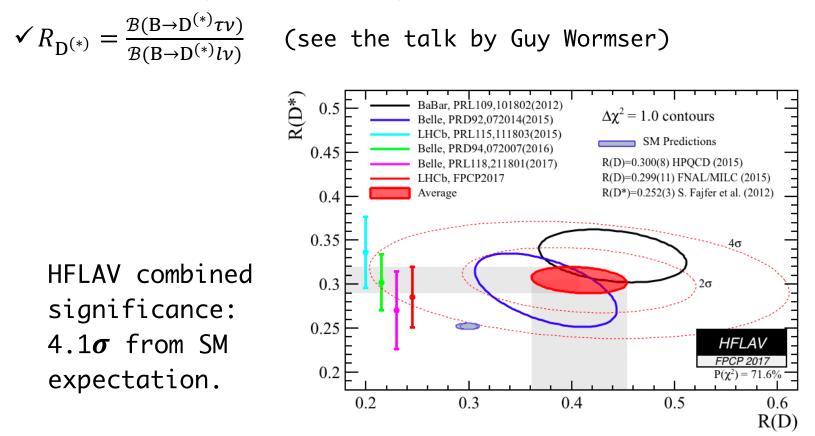
$> b \rightarrow s \mu^+ \mu^-$ anomalies

✓ Several branching fraction measured, show some tension with predictions, particularly at low q^2 .

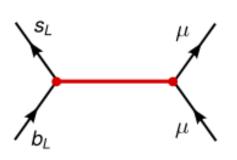


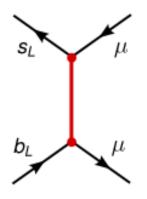
HFCPV-2017 @Wuhan

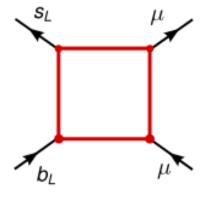
Rare B-decay anomalies : $R_{K^{(*0)}}$


> Lepton universality with loop decays

$$\checkmark R_{\mathbf{K}^{(*0)}} = \frac{\mathcal{B}(\mathbf{B} \to \mathbf{K}^{(*0)} \mu^{+} \mu^{-})}{\mathcal{B}(\mathbf{B} \to \mathbf{K}^{(*0)} J / \psi(\to \mu^{+} \mu^{-}))} / \frac{\mathcal{B}(\mathbf{B} \to \mathbf{K}^{(*0)} e^{+} e^{-})}{\mathcal{B}(\mathbf{B} \to \mathbf{K}^{(*0)} J / \psi(\to e^{+} e^{-}))}$$


Rare B-decay anomalies : $R_{D^{(*)}}$


 \succ Lepton universality with tree decays



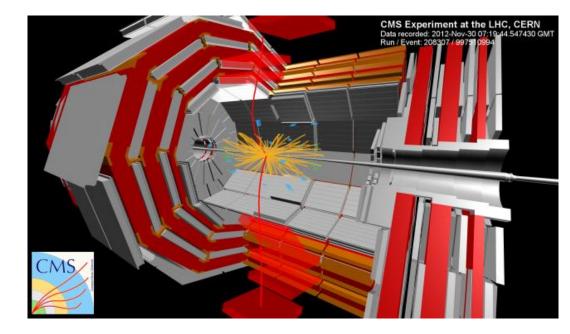
Logical possible BSM models

 \geq Possible models to explain the anomalies:

- Heavy Z' model
- SU(2)_L singlet or triplet

- Leptoquark model
- Spin 0 or 1

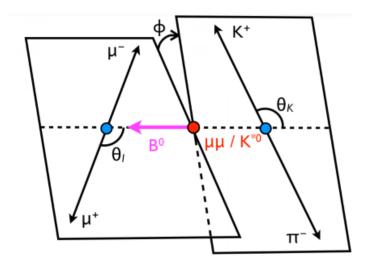
 Other new heavy scalars/vectors also leptoquarks possible

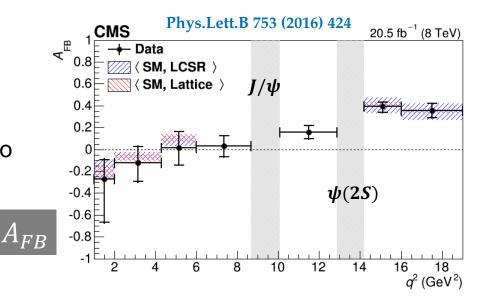

arXiv: 1509.05020, 1608.07832, 1704.05438, 1607.01659, 1704.07845, hep-ph/0610037, ...

arXiv:1403.1269, 1501.00993, 1503.03477, 1611.02703, ...

arXiv: 1511.01900, 1503.01084, 1704.05835, 1512.01560, 1511.06024, 1408.1627, ...

CMS is marvelous for **HF** studies


- ✓ Flexible triggers
- ✓ Large silicon tracker
- ✓ Strong magnetic field
- ✓ Broad acceptance
- ✓ Superb muon systems



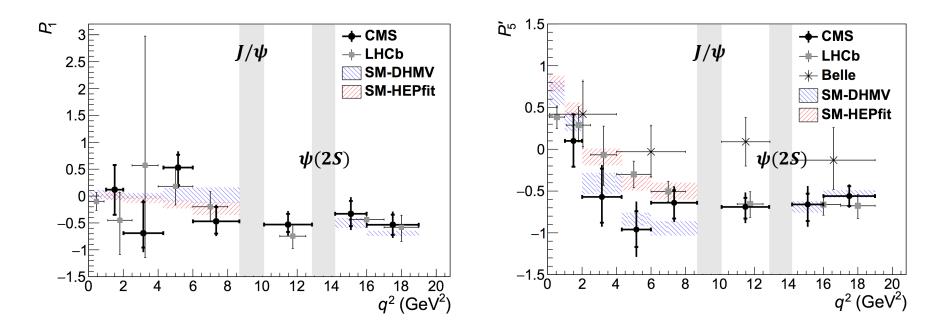
- Three different devices, coverage up to $|\eta| < 2.4$
- Dimuon mass resolution ~0.6-1.5% (depending on |y|).
- Fake rate $\leq 0.1\%$ for π ,K; $\leq 0.05\%$ for proton.

Angular analysis: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- ✓ The process can be fully described by the three angles $(\theta_l, \theta_k, \phi)$ and the dimuon invariant mass squared q^2 .
- ✓ Robust SM calculation of several angular parameters, e.g. forward-backward asymmetry of the muons, A_{FB} , longitudinal polarization fraction of the K^*, F_L, F_s, A_s, P_i and P'_i , are available for much of the phase space.
- ✓ Discrepancy of the angular parameters vs q^2 with respect to SM might be hint of NP.

Angular analysis: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

> Two channels can contribute to the final state $K^+\pi^-\mu^+\mu^-$:


P-wave resonant channel, $K^+\pi^-$ from the meson vector resonance K^{*0} decay; S-wave no-resonant channel, $K^+\pi^-$ don't come from any resonance. **Folding the p.d.f. around** $\phi = 0$ and $\theta_1 = \pi/2$.

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_K d\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(F_{\rm S} + A_{\rm S} \cos\theta_K \right) \left(1 - \cos^2\theta_l \right) + A_{\rm S}^5 \sqrt{1 - \cos^2\theta_K} \right] \right\} \\ \sqrt{1 - \cos^2\theta_l} \cos\phi + \left(1 - F_{\rm S} \right) \left[2F_{\rm L} \cos^2\theta_K \left(1 - \cos^2\theta_l \right) + \frac{1}{2}F_{\rm L} \left(1 - F_{\rm L} \right) \right] \\ + \frac{1}{2} \left(1 - F_{\rm L} \right) \left(1 - \cos^2\theta_K \right) \left(1 + \cos^2\theta_l \right) + \frac{1}{2}F_{\rm L} \left(1 - F_{\rm L} \right) \\ \left(1 - \cos^2\theta_K \right) \left(1 - \cos^2\theta_l \right) \cos2\phi + 2F_{\rm S} \cos\theta_K \sqrt{F_{\rm L}} \left(1 - F_{\rm L} \right) \\ \sqrt{1 - \cos^2\theta_K} \sqrt{1 - \cos^2\theta_l} \cos\phi \right] \right\}$$
P-wave

✓ F_L, F_S, A_s : fixed from previous CMS measurement (Phys.Lett.B 753 (2016) 424) ✓ P_1, P'_5 : recently measured parameters ✓ A_s^5 : nuisance parameter

Submitted to Phys. Lett. B. arXiv:1710.02846

P_1 and P_5^\prime Distributions

- ✓ SM-DHMV is computed using soft form factors in addition with parametrised power corrections and with the hadronic charm-loop contribution derived from calculations (JHEP 01 (2013) 048, JHEP 05 (2013) 137)
- ✓ SM-HEPfit uses full QCD computation of the form factors and derives the hadronic contribution from LHCb data (JHEP 06 (2016) 116, arXiv:1611.04338)
- ✓ Both SM predictions are in agreement with the CMS experimental results, albeit CMS data are slightly more compatible with SM-DHMV, while LHCb data with SM-HEPfit.

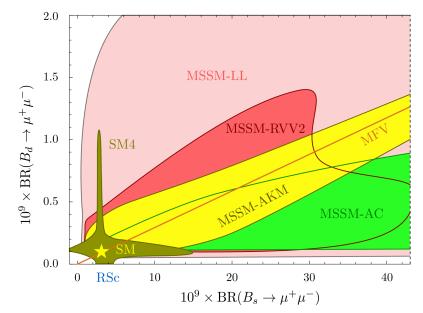
Belle: PRL 118 (2017) 111801 LHCb: JHEP 02 (2016) 104 ATALS preliminary: ATLAS-CONF-2017-023

 $\underline{B^0} \rightarrow \overline{K^{*0}}\mu^+\mu^-$

Rare decay search: $B^0_{(s,d)} \rightarrow \mu^+ \mu^-$

✓ $B^0_{(s,d)}$ → $\mu^+\mu^-$ decays are only proceed through FCNC processes and are highly suppressed in SM:

> Loop diagram + Suppressed SM +Theoretically clean =


An excellent place to look for <u>new physics</u>.

✓ Some of the new physics scenarios may boost the $B \rightarrow \mu^+\mu^-$ decay rates by 10~20 times easily, for example:

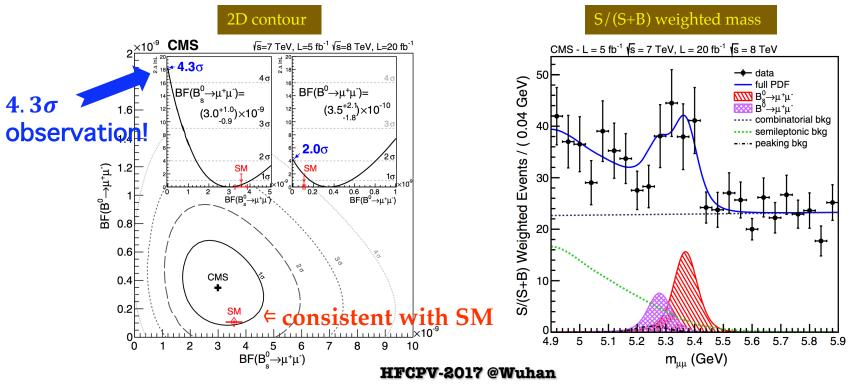
- 2HDM: $\mathcal{B} \propto \tan^4 \beta \& m(H^+)$
- MSSM: $\mathcal{B} \propto \tan^6 \beta$

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.63) \times 10^{-9}$ $\mathcal{B}(B_d^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

HFCPV-2017 @Wuhan

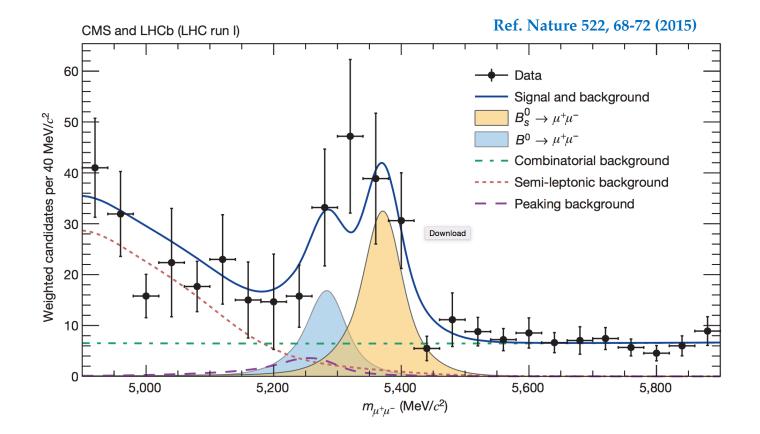
Ref: D. M. Straub, arXiv: 1012.3893

Reference analysis



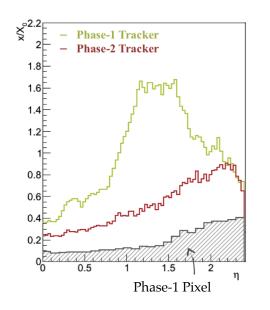
Ref. CMS PRL 111 (2013) 101804

- ✓ Event classification is carried out by Boosted Decision Tree (BDT).
- ✓ Branching fractions were extracted by unbined maximum likelihood fits in 12 categorized BDT bins.


Channel	Branching fraction		
$B_s^0 \rightarrow \mu^+ \mu^-$	$(3.0^{+1.0}_{-0.9}) \times 10^{-9}$		
$B_d^0 \rightarrow \mu^+ \mu^-$	< 1.1×10 ⁻⁹ @ 95% CL		

Simultaneous publication with LHCb, each with > 4σ for $B^0_s \to \mu^+\mu^-.$

CMS and LHCb combination


 $\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}) = (2.8^{+0.7}_{-0.6}) \times 10^{-9} \quad (6.2\sigma \text{ significance})$ $\mathcal{B}(B_{d}^{0} \to \mu^{+}\mu^{-}) = (3.9^{+1.6}_{-1.4}) \times 10^{-10} \quad (3.0\sigma \text{ significance})$

HFCPV-2017 @Wuhan

CMS towards the future

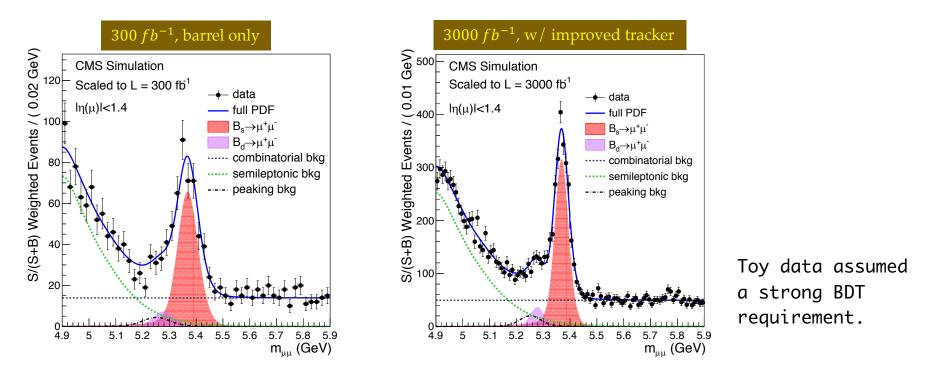
Scope of CMS upgrade

✓New tracker system

- Feature 4 pixel barrel layers and 5 disks on the endcaps with half of the material budget in the central region.
- \circ Combined with a smaller silicon sensors pitch, the momentum resolution will be improved, and help to separate B^0_d and B^0_s signals.

✓Forward muon system

 \circ provide coverage up to $\eta=3$ or more.

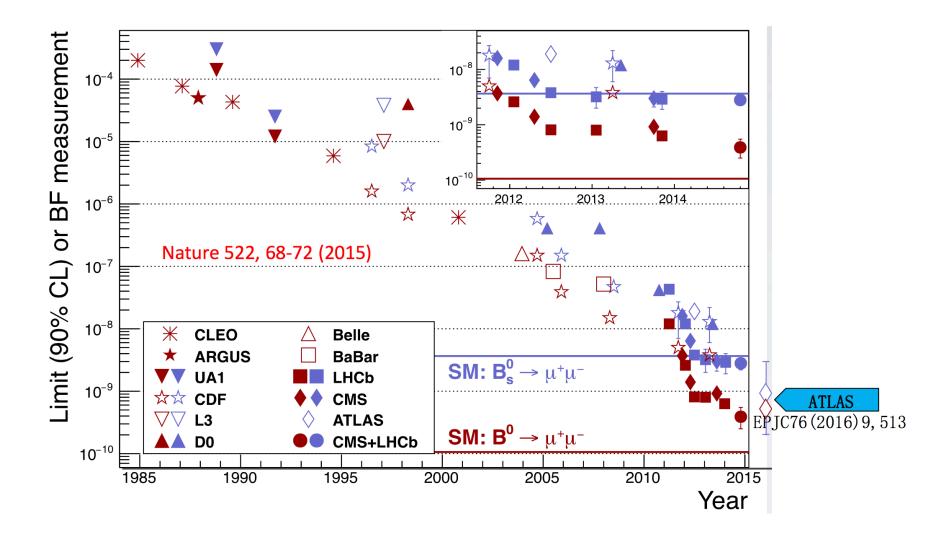

✓ Enhanced L1 trigger

• Extended trigger capabilities for the muon system with improved coverage in the forward direction.

CMS towards the future

$B^0_{(s,d)} \to \mu^+ \mu^-$

≻Results

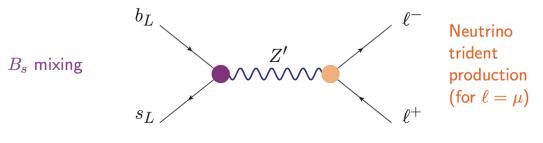

$L(fb^{-1})$	$\delta \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$\delta \mathcal{B}(B^0_d \to \mu^+ \mu^-)$	B_d^0 significance	$\delta[\mathcal{B}(B^0_d)/\mathcal{B}(B^0_s)]$
100	14%	63%	$0.6 - 2.5\sigma$	66%
300	12%	41%	$1.5 - 3.5\sigma$	43%
300 (barrel)	13%	48%	$1.2 - 3.3\sigma$	50%
3000 (barrel)	11%	18%	$5.6 - 8.0\sigma$	21%

Ref. CMS-PAS-FTR-14-015

HFCPV-2017 @Wuhan

30 years of searching

Summary


- ★ CMS has carried out angular analysis of the decay $B^0 \rightarrow K^{*0}\mu^+\mu^-$, and will keep searching the rare decays: $B^0_{(s,d)} \rightarrow \mu^+\mu^-$. The measurement of P_1 and P'_5 show no significant deviations from SM.
- ★ CMS is an ideal environment to study rare B-decays, some other rare decays analyses on going: $B^+ \rightarrow K^+ \mu^+ \mu^-$, $B^+ \rightarrow K^{*+} \mu^+ \mu^-$, $B_s^0 \rightarrow \phi \mu^+ \mu^-$, etc.
- Interesting set of anomalies observed in B decays given experimental precision and theoretical uncertainties, none of them are yet compelling IMHO.
- More data and future theoretical developments will clarify these anomalies.

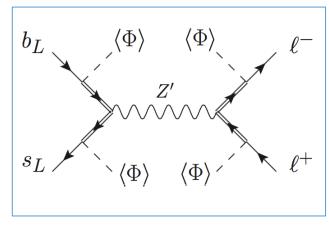
Additional Materials

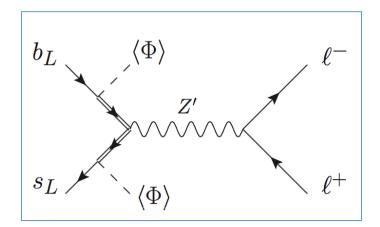
Z' model

 $\mathbf{G} \equiv \mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y \times \mathbf{G}_\mathrm{E}$

Flavor violating couplings to quarks Lepton-flavor universality violation (in left-handed quarks)

- $SU(2)_L$ singlet case: $G_E \equiv U(1)', U(1)' \times U(1)''$
- $SU(2)_L$ triplet case: $G_E \equiv SU(2)'$
- ${\sc tr}$ Extra requirements: extended scalar sector to give mass to the Z' and/or to accommodate quark masses and mixing angles


Models with an extra SU(2)'


- The triplet operator $O_{lq}^{(3)}$ can provide a simultaneous explanation to the $b \rightarrow sl^+l^-$ and $R_{n^{(*)}}$ anomalies. arXiv:1505.05164, 1702.07238
- Dynamical SU(2)' model arXiv:1506.01705
- Ultraviolet complete SU(2)' model arXiv:1604.03088, 1608.01349
 - $\circ \quad SU(2)_1 \times SU(2)_2 \times U(1)_Y$
 - $\circ~$ Non-universality induced through mixing with VL fermions

Z' model

U(1)' models with vector-like fermions:

- Extended the SM with an extra gauged dark $U(1)_{\boldsymbol{X}}$
- Add heavy vector-like fermions charged under $U(1)_{\rm X}$
- SM-VL mixing includes effective SM Z' couplings
- Interesting interplay with DM, very general framework;
- The mixing parameters are ad hoc, lack of predictability, the SM-VL mixings are unknown.

arXiv:1403.1269, 1501.00993

- Gauge the $U(1)_{L_{\mu}-L_{\tau}}$ sysmetry
- Automatically anomaly-free with the SM alone
- Good zeroth order approximation to neutrino mixing with quasi-degenerate masses
- SM-LV mixing includes effective SM Z' couplings with quarks
- Prediction in lepton sector, interesting interplay with DM;
- The mixing parameters are ad hoc, lack of predictability in the quark sector.

HFCPV-2017 @Wuhan

arXiv:1503.06077

Leptoquark models

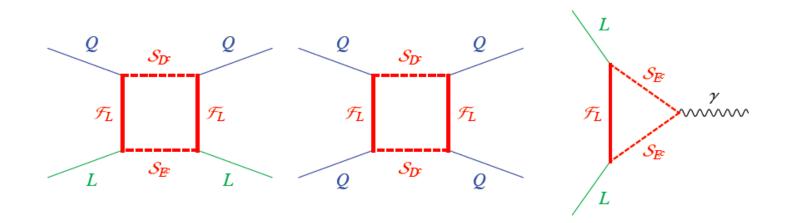
Spin	G	Name	Topology	$R_{D^{(*)}}$?	
0	$(\bar{3},1)_{1/3}$	S ₁		\checkmark	Bauer and Neubert 1511.01900
0	$(\bar{3},3)_{1/3}$	S_3	‡	\checkmark	Medeiros Varzielas and Hiller 1503.01084
1	$(3, 2)_{7/6}$	R_2			Bečirević and Sumensari 1704.05835
1	$(3,1)_{2/3}$	U_1	*	\checkmark	Barbieri et al. 1512.01560
1	$(3,3)_{2/3}$	U ₃	*	\checkmark	Fajfer and Košnik 1511.06024

- $S_1 \ \& \ S_3$ can have problematic B-violating coupling
- All 5 models predict $C_9^{\mu} = -C_{10}^{\mu}$
- U₁ can additionally generate $C_9^{\prime\mu}=C_{10}^{\prime\mu}$

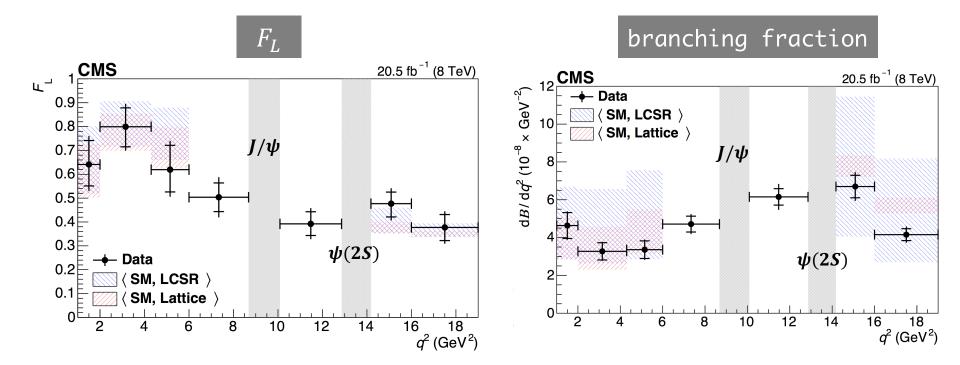
arXiv: 1511.01900, 1503.01084, 1704.05835, 1512.01560, 1511.06024, 1408.1627, 1412.1791, ...

>LQ models exist that are able to explain $R_{K^{(*0)}}$, $R_{D^{(*)}}$ and $(g-2)_{\mu}$

Other loop (box) models

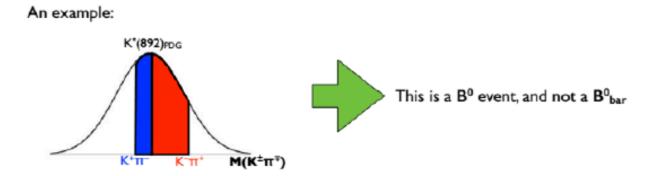

New scalars and vector-like fermions

Interesting point: ΔM_s always enhanced except with Majorana fermions


arXiv: 1509.05020, 1608.07832 hep-ph/0610037

Fundamental partial compositeness

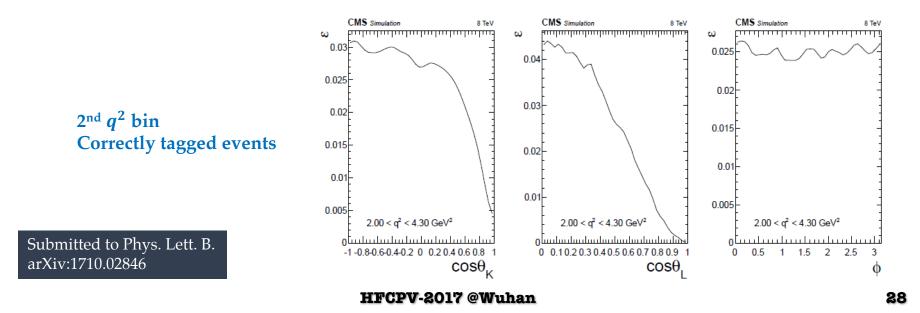
arXiv: 1704.05438, 1607.01659, 1704.07845


Angular analysis: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Phys.Lett.B 753 (2016) 424

- Compute the invariant mass assigning to track-1 the mass of the Kaon and to track-2 the mass of the pion
- Compute the invariant mass assigning to track-1 the mass of the pion and to track-2 the mass of the Kaon
- The closer mass to the K* PDG mass defines whether it' s a B0 or a B0_bar

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$


p.d.f and Efficiency

 $B^0 \rightarrow K^*{}^0\mu^+\mu^-$

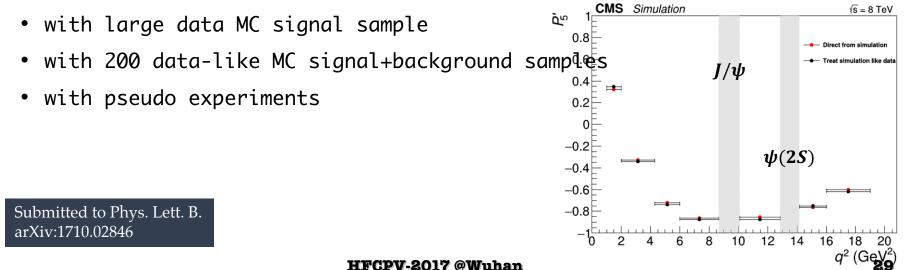
> The probability density function and efficiency

p.d.f.(m,
$$\theta_{K}, \theta_{l}, \Phi$$
) = $Y_{S}^{C} \begin{bmatrix} S^{C}(m) S^{a}(\theta_{K}, \theta_{l}, \phi) \varepsilon^{C}(\theta_{K}, \theta_{l}, \phi) \end{bmatrix}$ Correctly tagged events
Mistag fraction $+ \frac{f^{M}}{1 - f^{M}} S^{M}(m) S^{a}(-\theta_{K}, -\theta_{l}, \phi) \varepsilon^{M}(\theta_{K}, \theta_{l}, \phi) \end{bmatrix}$ Mistagged events
 $+ \frac{Y_{B} B^{m}(m) B^{\theta_{K}}(\theta_{K}) B^{\theta_{l}}(\theta_{l}) B^{\phi}(\phi)}{Background}$

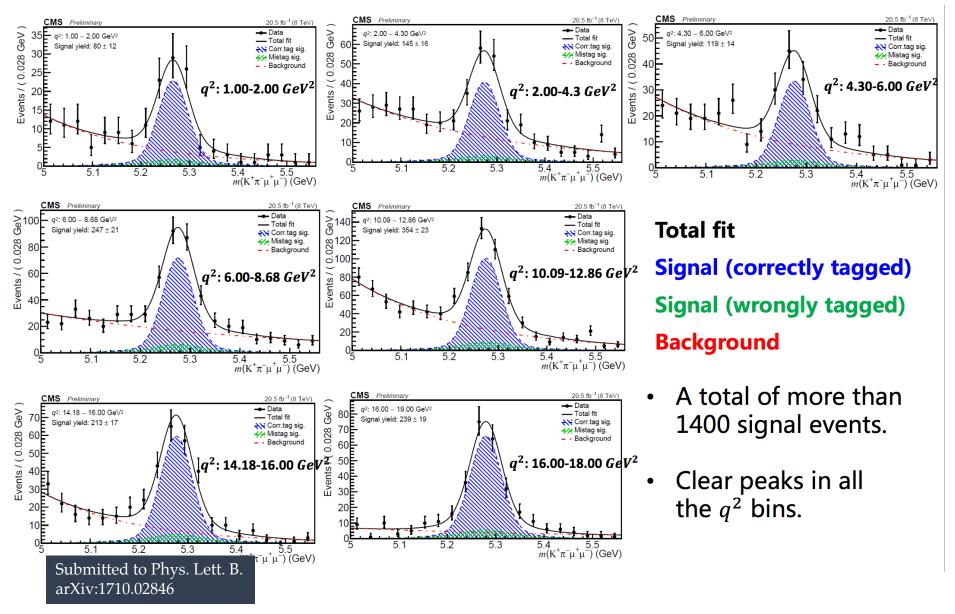
- ✓ Signal contribution: mass shape (double Gaussian), decay rate, and 3D efficiency function.
- ✓ Background contribution: mass shape (exponential) and different degrees polynomial functions for each angular variable.

Fitting and Validation

 $\underline{B}^{0} \rightarrow \overline{K^{*0}}\mu^{+}\mu^{-}$



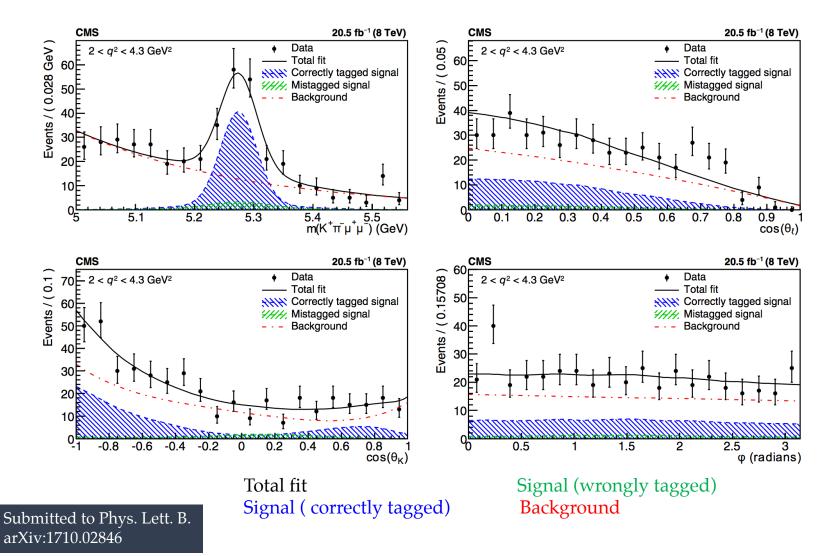
- ✓ extracted from un-binned extended maximum likelihood fit in each bin: $m(K^+\pi^-\mu^+\mu^-), \cos\theta_l, \cos\theta_K, \phi$
- ✓ Fit performed in two steps:
 - 1) fit sidebands to determined background shape, fixed in the next step;
 - 2) fit whole mass spectrum, 5 free parameters.


>Validation with data control channels:

- ✓ Fit performed with FL free to float;
- \checkmark FL measured agrees with PDG value.

> Several validation steps are performed with simulation:

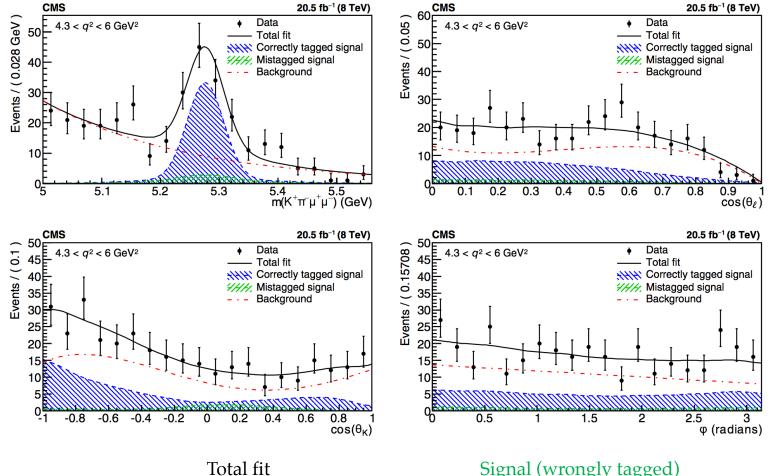
Fitting result projections



 $\underline{B^0} \rightarrow \overline{K^{*0} \mu^+ \mu^-}$

Fitting result projections

$> 2^{nd} q^2 bin$


More than 1400 signal events in total

 $B^0 \rightarrow K^* {}^0 \mu^+ \mu^-$

Fitting result projections

 $> 3^{rd} q^2 bin$

Signal (correctly tagged)

Signal (wrongly tagged) Background

Submitted to Phys. Lett. B. arXiv:1710.02846

 $B^0 \rightarrow K^* {}^0 \mu^+ \mu^-$

Systematic uncertainty

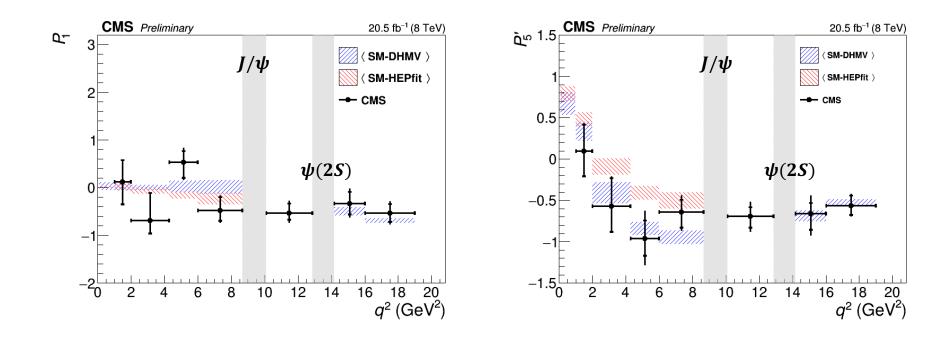
Systematic uncertainty	$P_1(10^{-3})$	$P_5'(10^{-3})$
Simulation mismodeling	1 – 33	10 - 23
Fit bias	5 – 78	10 - 119
MC statistical uncertainty	29 – 73	31 – 112
Efficiency	17 - 100	5 — 65
K π mistagging	8 - 110	6 - 66
Background distribution	12 - 70	10 - 51
Mass distribution	12	19
Feed-through background	4 - 12	3 - 24
F_L, F_S, A_s uncertainty propagation	0 - 126	0 - 200
Angular resolution	2 - 68	0.1 - 12
Total	60 - 220	70 - 230

 F_L, F_S, A_s uncertainty propagation:

 Generate a large data, *O*(100×data), pseudo experiments (one per q²);

 $B^0 \rightarrow \overline{K^*}^0 \mu^+ \mu^-$

- Fit with all 6 angular parameters free to float;
- Fit with F_L, F_S, A_s fixed;
- Ratio of uncertainties between free and partially-fixed fit is used to compute the systematic uncertainty.


Results


q ² (GeV ²)	Signal yield	P ₁	P ₅ '	Correlations
1.00 - 2.00	80 ± 12	$+0.12^{+0.46}_{-0.47}\pm0.10$	$+0.10^{+0.32}_{-0.31}\pm0.07$	-0.0526
2.00 - 4.30	145 ± 16	$-0.69^{+0.58}_{-0.27} \pm 0.23$	$-0.57^{+0.34}_{-0.31} \pm 0.18$	-0.0452
4.30 - 6.00	119 <u>+</u> 14	$+0.53^{+0.24}_{-0.33}\pm0.19$	$-0.96^{+0.22}_{-0.21} \pm 0.25$	+0.4715
6.00 - 8.68	247 ± 21	$-0.47^{+0.27}_{-0.23} \pm 0.15$	$-0.64^{+0.15}_{-0.19} \pm 0.13$	+0.0761
10.09 - 12.86	354 ± 23	$-0.53^{+0.20}_{-0.14} \pm 0.15$	$-0.69^{+0.11}_{-0.14} \pm 0.13$	+0.6077
14.18 - 16.00	213 ± 17	$-0.33^{+0.24}_{-0.23} \pm 0.20$	$-0.66^{+0.13}_{-0.20} \pm 0.18$	+0.4188
16.00 - 19.00	239 <u>+</u> 19	$-0.53 \pm 0.19 \pm 0.16$	$-0.56 \pm 0.12 \pm 0.07$	+0.4621

CMS Results

 $B^0 \to K^{*0} \mu^+ \mu^-$

CMS towards the future

>Analysis Assumptions

- ✓ Pseudo experiments are used to estimate the expected CMS performance in two different scenarios:
 - $\circ\,$ The Phase-1 scenario: corresponding to the expected performance of the CMS detector including LHC Run-II and Run-III, to an integrated luminosity of 300 fb⁻¹ at 14TeV.
 - $\circ~$ The Phase-2 upgrade scenario: corresponding to the expected performance of the CMS detector after the full Phase-2 upgrades and to a luminosity of $3000~{\rm fb^{-1}}$ at 14TeV.
- ✓ GEANT4-based simulated samples are used to estimated the performance of trigger, resolution, and pile-up effect at the phase-2 running condition.
- ✓ Muon efficiency and identification are assumed to be the same as Run-I.
- \checkmark Standard Model branching fractions are assumed in the study.