

H(->bb) measurements in ATLAS

Zhijun Liang (梁志均)

(IHEP, Chinese Academy of Science)
On behalf of ATLAS collaboration

Higgs-bottom Yukawa couplings

- H→bb has the largest branching ratio (~58%)
- Evidence of fermionic decays in Run 1:

 $H \rightarrow bb: 2.6\sigma \text{ (expected 3.7\sigma)}$

Higgs decays at m₊=125GeV

channel	Reference	Integrated Lumiosity
VH(bb¯)	arXiv:1708.03299	36 fb ⁻¹ (13TeV)
VBF H(bb) γ	ATLAS-CONF-2016-063	12.5 fb ⁻¹ (13TeV)

How to Identify b quark jets in ATLAS (2)

- Two ways to Identify b jets
 - impact parameters
 - secondary vertex from B decay

ATLAS Detector upgrade from run 1 to run 2

• IBL = New Insertable pixel B-Layer at R=33 mm

B tagging performance Improvement after upgrade

Light jet rejection power increases by a factor of 10

VBF $H(bb)\gamma$ final state

- Search for H->bb in VBF events containing a central photon
- Advantages of requiring a photon
 - extra handle for trigger
 - suppresses QCD background
 - Sensitive to WWH VBF production
 - not sensitive to ZZH VBF

VBF $H(bb)\gamma$ event selection

ATLAS-CONF-2016-063

Trigger:

- L1 trigger: single photon (pT > 25 GeV)
- High level trigger: 4 jets pT > 35 GeV, mjj> 700 GeV

Offline Selection:

- Tight ID photon, pT > 30 GeV
- 4 jets with pT> 40 GeV
- 2 central(|η|<2.5) b-tagged jets
- pT(bb)>80GeV
- mjj> 800 GeV
- BDT discriminant

 $\Delta R(jet, \gamma), m_{jj}, \Delta \eta_{jj}, H_T^{soft}$, jet width, γ centrality, $p_T^{balance}$

- Define 3 regions with different S/B
- Fit m_{bb} in 3 regions

VBF H(bb)γ MVA Input variable: photon centrality

$$centrality(\gamma) = \left| \frac{y_{\gamma} - \frac{y_{j_1} + y_{j_2}}{2}}{y_{j_1} - y_{j_2}} \right|$$

VBF $H(bb)\gamma$ signal extraction

ATLAS-CONF-2016-063

 Non-resonant background (γ+jets) estimated with 2nd order polynomial fit.

Statistics uncertainty in mbb sideband region dominated

	High BDT score region		
Events / 10	70 ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 12.6 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 12.6 \text{ fb}^{-1}$ High BDT $\sqrt{s} = 13 \text{ TeV}$ NonRes Bkgd Uncertainty		
3kg	0.3 0.2 0.1 0.1 0.2 0.3 60 80 100 120 140 160 180 200 220 240 m _{bb} [GeV]		

Result	$H(\rightarrow b\bar{b}) + \gamma jj$	$Z(\rightarrow b\bar{b}) + \gamma jj$
Expected significance	0.4	1.3
Expected p-value	0.4	0.1
Observed p-value	0.9	0.4
Expected limit	$6.0_{-1.7}^{+2.3}$	$1.8 \begin{array}{c} +0.7 \\ -0.5 \end{array}$
Observed limit	4.0	2.0
Observed signal strength μ	$-3.9 \begin{array}{c} +2.8 \\ -2.7 \end{array}$	0.3 ±0.8

VBF H (bb) γ production cross section limit

> Expected 95% CL limit:

$$6.0^{+2.3}_{-1.7}$$

Observed 95% CL limit:

$$4\times(\sigma\times BR)^{SM}$$

中国科学院為能物程研究所 Institute of High Energy Popysics

VH(bb): 3 channels

O-lepton:

 $E_{T}^{miss} > 150 GeV$

> 1-lepton:

 e/μ , p_{\rightarrow} 25 GeV

Tight isolation

Missing E_T

p_V > 150 GeV

> 2-leptons:

Isolated ee, μμ p_T1>25 GeV, p_T2>7 GeV

No missing E,

 m_{μ} compatible with m_{z}

Two jets

anti-kT with R=0.4

P_^{j1}>45 GeV

p_^{j2}>20 GeV

Improved b-tagging with respect to Run 1:

Eff: 70%, light jet

rejection: 380, charm

rejection: 12

Analysis categories:

2/3 jets (0/1lepton)

2/≥3jets (2lept.)

P_T </> 150 GeV (2lept)

нышие ој нуп ъпену чнумб

VH(bb) background

arXiv:1708.03299

- Z+bjets dominates in 0, 2 lepton channels
- Top quark and W+jets in 1 lepton channel
- Multi-jet background
 - negligible in 0/2 lepton channels after anti-QCD cuts
 - Data-driven estimate in 1 lepton channel

0 Lepton

1 Lepton

B jet energy corrections

- Using ATLAS default jet energy calibrations
 - Higgs mass resolution is not great
 - Asymmetry in mass, long tail in low mass region
- Dedicated B jet calibration
 - Muon-in-jets corrections
 - Kinematic likelihood

VH(bb): signal extraction

- Combined signal strength with 36 fb-1 at \sqrt{s} = 13 TeV
 - 3.5 σ observed significance (3.0 σ expected)
 - Systematic and statistical uncertainties of the same size
 - Dominant systematics from b-tagging and background normalization & modelling (W+jets, Z+jets, top)

中国科学院為能物程研究所 Institute of High Energy Physics

arXiv:1708.03299

Summary

- The search for the Higgs decays to b-quarks in ALTAS
 - Using run-II 13TeV data
 - VH(bb): Expected (observed) significance: 3.5 (3.0)
 - VBF H(bb)γ: first ATLAS result (ever)
 Expected (observed) 95% CL limit: 6 (4) times the SM expectation

Introduction

- Introduce a new channel in VBF H->bb
- pp->h(bb) jj +γ
 - Measurement of bbH and WWH coupling
 - By requiring a central photon
 - S/B ratio is much better than VBF H->bb

Inspired by Barbara Mele's paper http://arxiv.org/abs/hep-ph/0702119

MC Samples

- Signal samples (VBF H(->bb)+γ):
 - generated with Madgraph, parton shower by Pythia8
- Z(bb)γ+jets (resonance background)
 - EWK VBF H(->bb)+γ
 - generated with Madgraph, parton shower by Pythia8
 - QCD VBF H(->bb)+γ
 - generated with Madgraph, parton shower by Pythia8
- QCD γbb+jets (Non resonance background)
 - generated with Madgraph, parton shower by Pythia8

For MVA training

Trigger

- Threshold for single photon trigger and 4jets triggers are high.
 - Single photon: trigger EF_g120_loose (ET>120GeV. too high)
 - General 4jet triggers : ET>100GeV (too high)
- Dedicated trigger developed in 2015 for this analysis.
- Analysis is mainly based on VBF0b trigger.
 - L1 item: L1EM22VHI (trigger on EM object with ET>22GeV)
 - HLT:
 - Medium ID photon, pT >25GeV

Nick name	•Trigger name pT >35GeV, eta <4.9 • Mjj>700GeV	Integrated Iumiosity
VBF0b	HLT_g25_medium_L1EM22VHI_4j35_0eta490_invm700	2.5 fb-1 (2015)
		10.1 fb-1 (2016)

How to Identify b quark jets in ATLAS

Impact of each systematics

➤ Non-resonance background systematics is the leading systematics.

Uncertainty source	Uncertainty $\Delta \mu$
Non-resonant background uncertainty in medium-BDT region	0.22
Non-resonant background uncertainty in high-BDT region	0.21
Non-resonant background uncertainty in low-BDT region	0.17
Parton shower uncertainty on $H + \gamma$ acceptance	0.16
QCD scale uncertainty on $H + \gamma$ cross section	0.13
Jet energy uncertainty from calibration across η	0.10
Jet energy uncertainty from flavour composition in calibration	0.09
Integrated luminosity uncertainty	0.08

MVA Input variable: H_Tsoft

Low QCD activity in rapidity gap of two VBF jets for VBF

 H_T^{soft} : the scalar sum p_T of the soft TrackJets with $p_T > 7$ GeV (HT_soft) .

Major Background process

QCD pbbjj +y production

bckg is less active by requiring a central photon

dynamical effect:
destructive interference
for gamma at large angles
a) + b) and c)+ d)

dominant effect, but suppressed by the b-quark electric charge

Inspired by Barbara Mele's paper http://arxiv.org/abs/hep-ph/0702119

Event pre-selection

Selection	Requirement	
Derivation	HIGG5D3	
Trigger	HLT_g25_medium_L1EM22VHI_4j35_0eta490_invm700	
Event quality	pass GRL	
(data only)	no Tile, LAr, SCT and Core error	
Primary Vertex	At least one primary vertex	
Photon	≥ 1 photon	
Jets	\geq 4 jets ($p_T > 40$ GeV, $ \eta < 4.5$)	
	\geq 2 jets in $ \eta < 2.5$ (central jets)	
Higgs signal	two central jets with highest MV2c10 weights	
jet (BB)		
VBF jets (JJ)	pair of non-signal jets with highest invariant mass	
<i>b</i> -jets	2 b-tagged jets	
	(tagged on the BB pair with MV2c10 at 77% fixed cut working point)	
m_{JJ}	$m_{JJ} > 800 \mathrm{GeV}$	
$p_T(BB)$	$p_T(BB) > 80 \text{ GeV}$	

MVA studies

BDT training samples:

- signal: HbbjjaSM125 (direct tag)
- background: NonResbbjja (truth tag)

$$p_T^{balance} = \frac{(p^{b_1} + p^{b_2} + p^{j_1} + p^{j_2} + p^{\gamma})_T}{p_T^{b_1} + p_T^{b_2} + p_T^{j_1} + p_T^{j_2} + p^{\gamma}}$$

$$centrality(\gamma) = \left| \frac{y_{\gamma} - \frac{y_{j_1} + y_{j_2}}{2}}{y_{j_1} - y_{j_2}} \right|$$

11 BDT input variables:

variable	definition
dRB1Ph, dRB2Ph, dRJ1Ph, dRJ2Ph	angular separation between the selected jets and the photon
mJJ, dEtaJJ	kinematics of the VBF jets
WidthJ1, WidthJ2	calorimeter jet width of the VBF jets
pTBal	pT balancing variable for selected final state objects
cenPhJJ	centrality of the photon with respect to the VBF jets
HT_soft	scalar sum pT of the soft TrkJets (pT>7GeV)

m_{bb} Fit configurations

H+γ fit configuration

- H+ γ normalization $\mu_{H is}$ the parameter of interest.
- H+γ and Z+γ shape from MC simulation
- Z+y normalization from MC predictions
 - The normalization of are from MC simulation.
- Non-resonance background is fitted as 2nd order polynomial

• Z+y fit configuration

- EWK Z(bb)γ+jets and QCD Z(bb)γ+jets are considered as signal
- H+γ and Z+γ shape from MC simulation
- H+γ is normalization from MC simulation

$$\mathcal{L}(\mu, \boldsymbol{\theta}) = \prod_{j=1}^{N} \frac{(\mu s_{j}(\boldsymbol{\theta}) + b_{j}(\boldsymbol{\theta}))^{n_{j}}}{n_{j}!} e^{-(\mu s_{j}(\boldsymbol{\theta}) + b_{j}(\boldsymbol{\theta}))} \prod_{i=1}^{Q} f_{X}(\theta_{i} | \bar{\theta_{i}}, \sigma_{\theta_{i}}) \prod_{\substack{l=1 \text{institute of single energy many sics}}}^{P} \mathcal{G}_{X}(\theta_{l} | \bar{\theta_{l}}, \sigma_{\theta_{l}})$$

Mbb fit with 3 category: high/medium/low BDT region

H+v fit configuration

- H+ γ normalization $\mu_{H\,is}$ the parameter of interest.
- Z+γ normalization and Z+γ shape from MC simulation
- Z+γ fit configuration
 - EWK Z(bb)γ+jets and QCD Z(bb)γ+jets are signal
 - H+y normalization and H+y shape from MC simulation

Result	$H(\to b\bar b) + \gamma jj$	$Z(\to b\bar{b}) + \gamma jj$
Expected significance	0.4	1.3
Expected p -value	0.4	0.1
Observed p -value	0.9	0.4
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$	$1.8 \begin{array}{c} +0.7 \\ -0.5 \end{array}$
Observed limit	4.0	2.0
Observed signal strength μ	$-3.9 \begin{array}{c} +2.8 \\ -2.7 \end{array}$	0.3 ± 0.8

Systematic uncertainties

- Theoretical uncertainties for H+gamma and Z+gamma
 - QCD scale systematics
 - Parton shower systematics
- Non-resonance background systematics
 - Statistics in mbb sideband region
- Experimental uncertainties
 - Jet systematics (Jet energy scale)
 - B-tagging efficiency systematics

Analysis strategy

- Pre-selection cut
- MVA analysis (boosted decision tree)
 - category the events into three category
- Extract signal from m_{bb} fit

use a BDT to separate the signal and non-resonant background

Perform fit in m_{bb} spectrum

How to Identify b quark jets in ATLAS(1)

- Two ways to Identify b jets
 - impact parameters
 - secondary vertex from B decay

