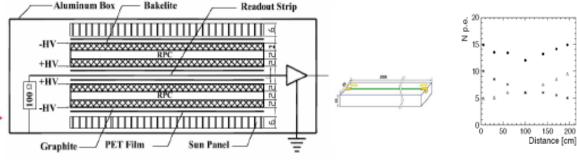
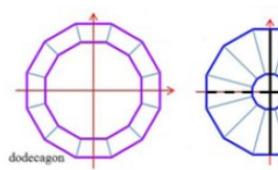

Muon Detector Status


Liang Li (SJTU)

CEPC Physics and Detector Meeting

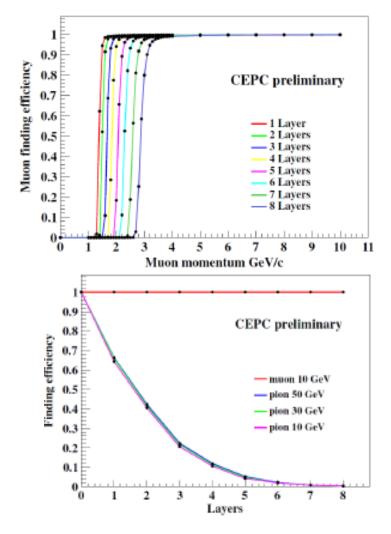
April 17th , 2017

Muon System Overview


Structure:

- Between magnet iron yoke, outside HCAL
- Cylindrical barrel & two endcap system
- Solid angle coverage: 0.98 * 4π

Technology:

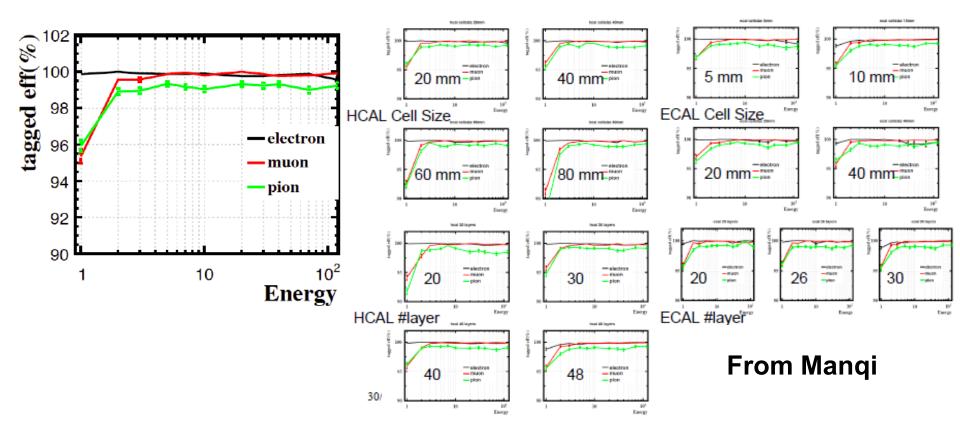

dodecagon

- Bakelite/glass RPC, Scintillator strip
- New technology/design welcome

Baseline Design (pre-CDR)

	10 A	2
Parameter	Possible range	Baseline
Lb/2 [m]	3.6- 5.6	40
Rin [m]	3.5-5.0	44
Rout [m]	5.5-7.2	7.0
Le [m]	2.0-3.0	2.6
Re [m]	0.6- L0	Q.8
Segmentation	8/10/12	12
Number of layers	6 - 10	8 (~4 cm per layer)
Total thickness of iron	$6 - 10\lambda (\lambda = 16.77 \text{ cm})$	8 (136 cm) (8/8/12/12/16/16/20/20/24)
Solid angle coverage	$0.94-0.98{\times}4\pi$	0.98
Position resolution [cm]	σ _{ef} 1.5-2.5 σ _e : 1-2	2 1.5
Average strip width [cm]	Wstrip: 2-4	3
Detection efficiency	92%- 98%	95%
Reconstruction efficiency $(E_{\mu} > 6 \text{ GeV})$	92%- 96%	94%
$P(\pi \to \mu) \# 30 {\rm GeV}$	0.5% - 3%	< 1%
Rate capability [Hz/cm ²]	50 - 100	~60
Technology	RPC Scintillating strip Other	RFC (super module, 1 layer readout, 2 layers of RPC)
Total area [m ²]	Bartel Endcap Total	~-4450 ~-4150 ~-8660
Total channels	Bartel Endcap Total	26500 29000 ~ 5.55 × 10 ⁴ (3 cm strip width, 1-D readout, 2 ends for barrel, 1 end for
		end-cap)

Signal efficiency > 95% for muon pT > 4 GeV with 8 layers


3

CDR Plan

Changing calorimeter parameters and study muon ID performance: near-term plan → mostly already done by Lepton ID and optimization group

- Baseline configuration (ILD)
- Single particle sample with CEPC_v1
- Change cell size, inner radius of ECAL/HCAL
- Change number of Si layers , e.g. ECAL 30→20, HCAL 48 → 40, layer thickness etc.
- Efficiency/rejection power vs. various parameters

Muon ID Performance: PFA & calorimeter alone

- PFA has done a terrific job in terms of Lepton ID
- No significant degradation for E > 2 GeV charged particles

5

CDR Plan

Muon system as an add-on: long-term plan

- Full simulation samples with built-in calorimeter / TCMT geometry, also integrated with yoke and magnet system
- Further layout optimization: N layers, thickness, cell size
- Complementary to Calorimeter
 - Effect as a tail catcher / muon tracker (TCMT)
 - JER with/wo TCMT
 - Exotics/new physics search study, e.g. long lived particles

Future Plan

Currently muon subgroup under calorimeter group

- Manpower in much need
 - New people/collaboration very welcome
- International / domestic collaboration opportunities abundant
 - Bakelite RPC, Scintillator strips
 - Electronics
 - New design/technology
- Detector technology
 - Bakelite/glass RPC: long-term reliability, readout system, resistivity and rate capability study
 - scintillator strips: extrusion production, performance study
- Detector electronics
 - Gas detector electronics: radiation hardness, spark-tolerant, ASIC electronics, bi-dimensional readout
 - SiPM readout electronics

Muon Detector Technology

Muon Chamber Technology	Deployment	Comments
Drift Tubes with field shaper electrodes	Barrel Tracking & Triggering Cell resol'n (rφ) < 250 μm	CMS
MDT (Monitored Drift Tubes) 3 cm dia.	Barrel Tracking Tube resol'n (rθ) ∼ 150 μm resolution	ATLAS
Small Diameter MDT 1.5 cm dia.	Tracking in some special regions of barrel	ATLAS
Cathode Strip Chambers (CSC)	Endcaps Tracking & CMS Triggering ATLAS: η strip pitch 5.5 mm, φ strip pitch 13 - 21 mm	CMS and ATLAS (2< ŋ <2.7)
Micromegas	Endcaps Tracking & Triggering Readout pitch ~ 0.4 mm	ATLAS Phase I Upgrade New Small Wheel
Thin Gap Chambers (TGC)	Endcaps Triggering & Tracking 2nd coordinate	ATLAS 1st and 2nd stations Endcap
Small-strip Thin Gap Chambers (sTGC)	Endcaps Triggering & Tracking Fast enough for BC tagging 95% τ < 25 ns; 3 mm strip-pitch	ATLAS Phase I Upgrade New Small Wheel
Resistive Plate Chambers (RPC)	Barrel and Endcaps Triggering Fast τ ~ 3ns ATLAS: η strip pitch ~ 30 mm, φ strip pitch ~ 30 mm	ATLAS and CMS
Low Resistivity RPC	Higher rate capability $10^{10} \Omega$ cm	R&D
Multi-gap Resistive Plate Chamber	Very fast $\tau \sim 50 \ \text{ps}$	ALICE and R&D
GEMs (3 layer)	Endcaps Rate ~ 10 ⁵ Hz/cm ² Fast τ ~ 4-5 ns	CMS Phase I Test & Phase II

From F. E. Taylor

8