Introductory remarks

Joao Guimaraes da Costa (Beijing)

April 17th 2017

Institute of High Energy Physics Chinese Academy of Sciences

Wuhan Workshop

• Two plenary talks:

中国科学院高能物理研究所

- Introduction (20 min): Joao;
- Summary (30 min):Yuanning
- Five parallel sessions
 - Vertex (Wed)
 - Tracker (Wed)
 - Muons and simulation (Wed)
 - Hadronic calorimeter (Thursday)
 - Electronic calorimeter (Thursday)
- Two joint parallel sessions
 - Physics and simulation joint with theory (Thursday)
 - MDI joint with accelerator (Thursday)
- Plenary CDR discussion led by Yuanning (Friday)

CDR discussions by project

Wuhan Workshop

Wednesday parallel sessions

1:00	Light-quark Jun GAO Yukawa couplings and hadronic	Status Ms. Ping YANG report from Vertex Detector	CEPC accelerator physics	SPPC General Progress	Ĩ	Coffee Break			
	event shapes in Higgs	group	CEDC narameter	LATTICE Design	10.00	Central China Normal Univer	rsity		15:30 - 16:00
	Dark matter searches at	The test Mr. Jian LIU setup	optimization and lattice design	Progress	16:00	How Does Leptonic Collider Indirectly Probe Neutralino Dark Matter?	Status Prof. Liang Li report from Muon group	CEPC SRF system study	Proton and ion linacs
	Science Hall – Lecture	development and sens	CEPC lattice design and	Bunch Filling Schemes		Science Hall – Lecture	-	CEPC SC quadrupole and	
	Normal University	Study of SOI pixel for the vertex detector	DA optimization	(remote)		Hall, Central China Normal University	Status of Mr. Zian ZHU the R&D on	sextupole designs	SS Conceptual Design
2:00	Progress Dr. Yaqing MA		CEPC beam-beam study	Progress in Collimation		Higgs Exotic Decays	the CEPC detector ma	CEPC 650MHz high	
	quarkonium physics	Discussion on Vertex Detector CDR planning	study	Studies			General Dr. Gang LI	efficiency klystron study	All HTS Dr. Qingjin XU
						Science Hall – Lecture	simulation study	CEPC Dr. Pong SHA	Science Hall – room 203,
	IWCEPC Organizing Com	nittee	Lunch Break			Hall, Central China Normal University	Contral China Normal	cavity R&D Con Univ	Central China Normal University
					17:00	Implications Dr. Lei WU	University	CEPC cavity Dr. Song JIN	Beam Screen
3:00					violating Top-Higgs	violating Top-Higgs	Progress Chengdong FU and Plan	HOM coupler and EP	
						Higgs Factories	for the CEPC Software Tools	CEPC HOM coupler and bunch lengtening effects	
	room 301, Central China No	rmai University	Central China Normal Unive	rsity 12:30 - 14:00					
4:00	Estimate the	Status report from Tracker Detector group	CEPC/SPPC Mr. Fong SU	LHC Mr. Ye ZOU 🛅					
	Higgs mass	Tracker Detector group	design	Collimation (remote)					
		Central China Normal University	CEPC Dr. Sha BAI sawtooth effect	Beam-beam effect					
	Triple gauge couplings at future hadron and lepton collider	Status and Dr. Zhi DENG plans of TPC ASIC FEE readout	CEPC Dr. Cal MENG injector Linac beam dynamics	Collective Instabilities					
		Drift chamber	CEPC booster						
5:00	Recent progress Zhao L1 of precision	alternative	injection/extraction and timing	Injection Dr. Ye YANG and					
	calculations at CEPC	Discussion on Dr. 20 28	CEPC injector Wei III	Extraction (remote)					

the Tracker

CDR planning

based on plasma

based accelerator

Wuhan Workshop

Thursday parallel sessions

09:00	CEPC Precision of	Status of HCAL based on	CEPC injector R&D	Discussions on	n future	14:00	Validation of Delphes Card for th	e CEPC Fast Simula	tion	Mr. Zhenwei CUI
	Parameters and Weakly	GEM		SPPC energy u	ipgrade		Central China Normal University			14:00 - 14:15
	Interacting Dark Matt	Status of HCAL based on	CEPC Dr. Wen	KANG			Energy Calibration			Dr. Guangyl TANG
	Testing the electroweak	THGEM and Scintillator	low field magnet R	BD Discussions on	perature		Central China Normal University			14:15 - 14:30
	electroweak	Status of Dr. Bing LIU	CEPC electrostatic				dE/dx measurement in TPC			Ms. Fenfen AN
	and a circular electron	SDHCAL based on RPC	seperator and pow sources	ver			Central China Normal University			14:30 + 14:45
10:00	Testing CP-Violation in the Scalar Sector at Future e+e- Colliders	Dual readout calorimeter	CEPC vacuum chan R&D	mber Science Hall – ro Central China N	oom 203, Inrmal	15:00	Status and Plans of the CEPC Phy	ysics Analysis towar	ds the CDR plus discussion	Yu BAI
	Singlet charged scalar and CEPC		CEPC Instrumental R&D	tion University			Central China Normal University			14:45 - 15:30
	Coffee Break						Coffee Break			
	Central China Normal Univer	sity		10>	40 - 11:00		Central China Normal University			15:30 - 16:00
11:00	Multi-Higgs final Dr. Qi-	shu YAN Status of ECAL	Dr. Zhigang WANG	e-p collision Dr. Yuho	ong ZHANG	16:00	Introduction to CEPC MDI	Dr. Sha BAI	EB Meeting	
	state and new physics	R&D from IHEP		AL CEPC-SPPC			Central China Normal University	15:00 - 16:15		
	Channed Lantan No.	Status of ECAL	R&D from USTC	Central China Normal Unit	iversity		Introduction to CEPC Beam	Mr. Qinglei XIU		
	Flavor Violations at	Qui Qui		Compatible arc M	tr. Feng SU		Background			
		Discussion on	Prof. Tao HU	CEPC and SPPC			Discussion on MDI	Dr. Hongbo ZHU		
	WW Threshold Calorimeter CDI		R	Central China Normal University						
12:00				Compatible Dr. Y straight sections	lukai CHEN	17:00				
	The CP-violation ///	ng CHEN Science Hall – ro China Normal Un	om 201, Central iversity	between CEPC and SPP	PC .					
	implications to future col						Central China Normal University	16:30 - 17:30	Room 201, Central China Normal Uni	versity

CDR timeline (aggressive)

• April 30:

- Decide on editors and timescale
- Establish SVN/git repository area
- Establish communication platform

• September 30:

- Text for all subsections finalized and committed to repository

• October 31:

- Harmonization of text across chapters
- Finalize introduction and other common aspects (references, authors, etc)
- Version for internal review finalized

• December 20:

- Version for external review ready

CDR Organization

- Possibility I: One detector concept
 - This detector needs to ''work'' at high-luminosity for Z physics
 - TPC or full Silicon?

- Consider options:
 - TPC, full silicon and drift chamber
 - Particle Flow and Dual readout calorimeter
- Possibility 2:Two detector concepts in equal footing
 - TPC-based, full silicon-based and drift-chamber detectors
 - Requires manpower for full simulation in equal footing of the two concepts
 - Very difficult to achieve within the timescale of 2017

CDR Challenges

- Manpower for making simulation and studies of different options by September 2017
 - Need help from international partners
- Technical design challenges:

- TPC operation at large rates
- MDI design and compensating magnets
- Beam energy measurement
- Luminosity measurement
- Alignment
- Benchmarks:
 - Higgs physics
 - Electroweak physics at Z pole and WW threshold

Possible CDR outline

- I. CEPC Physics Potential
 - I. Higgs physics
 - 2. Electroweak precision physics

- 3. Searches for physics beyond the Standard Model
- 4. Flavor physics
- 2. Experimental conditions and detector requirements
 - I. The CEPC experimental environment
 - I. Beam backgrounds, polarization, etc
 - 2. Detector requirements for e e physics
 - I. Track momentum and jet energy resolution, flavor tagging, particle identification
 - 3. Basic description of Detector Concepts
- 3. Vertex detectors
- 4. Tracking system
 - . Tracker concepts
 - I. The TPC tracking system
 - 2. The All-Silicon tracking system
 - 3. The Drift Chamber tracking system
 - 2. Beam induced backgrounds in tracking system
 - 3. Performance

Possible CDR outline

- 5. Calorimetry
 - I. Particle flow calorimeter
 - I. Hadronic calorimeter

- 2. Electromagnetic calorimeter
- 2. Dual readout calorimeter
- 3. Calorimeter performance
- 6. Detector magnet system
- 7. Muon system
 - I. Conceptual design of muon system
 - 2. Muon reconstruction algorithm and system performance
- 8. Readout electronics and data acquisition (?)
- 9. CEPC interaction region and detector integration
- 10. Physics performance
 - I. Simulation and reconstruction
 - 2. Luminosity measurement
 - 3. Energy measurement
 - 4. Performance of low-level physics observables
 - 5. Detector benchmark processes
- II. Future plans and R&D prospects

Agenda

CEPC Physics and detector regular meeting

Monday, 17 April 2017 from **15:00** to **18:00** (Asia/Shanghai) at **B410**

Vidyo Info	Room Name Link Extension	physicsanddetector http://vidyo.ihep.ac.cn/flex.html?roomdirect.html&key=wbvN1gQbDx5XJ4ZGk 002017041100
Monday, 17	7 April 2017	
15:00 - 15:20	Introduction Speaker: Joa	o Guimaraes Costa
15:20 - 15:40	MDI 20' Speaker: Dr.	Hongbo ZHU (IHEP)
15:40 - 16:00	Vertex 20' Speaker: Prot	f. Qun OUYANG (IHEP)
16:00 - 16:20	Tracker 20' Speaker: Dr.	Huirong Qi (Institute of High Energy Physics, CAS)
16:20 - 16:40	Calo 20' Speakers: Ha	aijun Yang (Shanghai Jiao Tong University), Prof. Tao HU (IHEP)
16:40 - 17:00	Muon 20' Speaker: Prot	f. Liang Li (Shanghai Jiao Tong University)
17:00 - 17:20	Magnet 20' Speakers: Mr Material: N	r. Zian ZHU (高能所), Dr. Feipeng NING (高能所) finutes
17:20 - 17:40	Simulation 2 Speakers: Mr	20' . Manqi Ruan (IHEP), Dr. Gang LI (Experimental Physics Division, Institute of H

Extra slides

Detector Pre-CDR Outline

CONTENTS

Author List

Admovfedgments

						35	Imp
					4	Bec	trowe
λut	tor List	t i		m		4.1	W_{i}
\.ck	nowled	gments		13			4.1
		-					4.1.2
1	Intro	ductor	1	1		42	CEF
	1.1	The C	EPC-SPPC Study Group and the Preliminary CDR	1			4.2.
	1.2	The C	see for the CEPC-SEPC in China	2			4.2.3
	1.3	The Se	Sence in the perCDR	2		43	Imp
	1.4	The A	ccelers for and the Experiment	3			43.
							4.3.2
2	Ove	view o	the Physics Case for CEPC-3PPC	5			4.3.
	2.1	New C	folliders for a New Frontier	7	_	-	
	2.2	The E	ectroweak Plase Transition	.8	ь	Hav	or Ph
	2.3	Natura	dness of the Electroweak Scale	27		5.1	Intr
	2.4	Dark 1	Matter	40		5.2	Bea
						53	Ver)
3	Hice	a Physi	cs at the CEPC	57		5.4	CL)
	3.1	Introd	action.	57		55	Cha
	3.2	Simul	ation and Reconstruction	59		5.6	Sur
		3.2.1	Detector Simulation and Software Chain	59		-	
		3.2.2	Detector Performance	60		The	CEPC
	3.3	Higgs	Boson Measurements	62		6.1	Det
		3.3.1	Production Cross Sections of Signal and Background Processes	62		62	Ven
		3.3.2	$\sigma(ZH)$ and m_H Measurements	64			5.2.
		3.5.3	Production Rates of Individual Higgs Roson Decay Medea	68			5.2.3
		3.3.4	Measurements of Branching Ratios	76			6.2.
		3.3.5	Measurement of Higgs Bason Width	77			62)
		3.3.6	Summary of the Higgs Measurems	78			62
							6.2.)
							6.2.1
						63	Sili
							6.3.
							1000

中国科学院高能物理研究所

3.4	Coupling Extractions and Combinations
	3.4.1 Coupling Fite
	3.4.2 Higgs Self-coupling
3.5	Implications
Bect	roweak Precision Physics at the CEPC
4.1	W, Z Measurements at the CEEC.
	4.1.1 Z Pole Measurements
	4.1.2 W Mass Measurement
42	CEPC Electroweak Oblique Parameter Fit
	4.2.1 The Precision Challenge for Theorists
	4.2.2 A General To Do List for a Successful Electroweak Fragram
43	Implications for New Physics
	4.3.1 Natural Supersymmetry and EWPT
	4.5.2 Composite Higgs scenarios
	4.3.3 Fermionic Higgs Portal
-	
Havo	r Physios at the CEPC
5.1	Introduction
5.2	Beauty and Charm Transitions
53	Very Rate Decays
5.4	CFV in # Decays and Production
55	Charged Lepton Flavor Violation
5.6	Sammary
The C	EPC Defector
61	Detector One prime
2.0	Execution Overview
0.2	Vertex Detector 6.7.1 Earlier research and Datastar Phaller as a
	62.1 Performance requirements and Decenter Chanterges
	6.2.2 Discuss Design
	52.4 Sater Online
	62.5 Mechanics and Internation
	52.6 Critical RAD
	62.7 Saamar
63	Silicon Tracker
	63.1 Baseline Desira
	63.2 Tanders Performance
	53.3 Catcal R/rD
6.4	Main Tracking Detector - TFC
	54.1 Design and Challenges
	64.2 Alignment and Calibration
	64.3 Critical R&D
65	Calor intetery System
	65.1 Electromagnetic Calor rocter

5.5.2 Hadronic Calorimeter

561 Baseline Design

Muon System

6.6

10		6.6.3 Future 3&D	205
\$4	6.7	Detector Magnet System	206
16		6.7.1 General Design Considerations	206
		6.7.2 Solenoid Design	207
97		6.7.3 Coil Manufacturing and Assembly	213
9T		6.7.4 Ane illaries	213
95		6.7.5 Magnet Tests and Field Mapping	214
103		6.7.6 Iron Yoke Design	214
05		6.7.7 Future 3&D	216
67	6.8	Machine-Detector Interface	217
08		6.8.1 Interaction Region Layout	217
0		6.3.2 Detector Backgrounds	218
		6.8.3 Luminosity Instrumentation	223
1.3		6.8.4 Mechanical Integration	2.2.4
114	6.9	Detector Facilities at the Experiment Area	225
		6.9.1 General Considerations	225
125		6.9.2 Underground Coverns and Access	225
25		6.9.3 Surface Building and Facilities	2.26
27		6.9.4 Safety Features	2.2.8
29			
:30	New	Physics Searches at SPPC	237
:33	7.1	Supersynanetry	237
:36	7.2	New Resonances	251
	7.3	New Fhenomera of Standard Mode. Physics	264
145	7.4	Running Electroweak Couplings as a Probe of New Physics	277
:45	7.5	D+L Violation at II gh Energies	230
148	7.6	Higgs and New Physics	283
148	Ento	re Heavy-lon and Electron-Jon Collision Program	335
145			
149	8.1	Introduction	335
52	8.2	QCD and Strong interaction Matter	335
54	8.5	Balk Properties of Matter in Heavy-tood, officions	14
55	0.9	Jet Quenching in Heavy-ton Controls	343
:56	8.5	Medium Rodification of Open Heilvy Mesons	334
-57	6.5	57 W Production	336
157	0.7	Summary Theorie Bears at a former Florence Design of Florence Lee Col Mars	339
.60	0.8	Thyse s respective at runne meeting room of meeting for contains	300
.60	Sum	mary	381
- 63			
.73	Interr	ational Review	383
74	A.1	Report of Review of CHPU-SppC Detector proCDR	384
181		A 1 Introduction	384
		A.1.2 Observations	384
29		A.1.3 Addressing the questions in the charge	384
200	A.2	K&D topics suggested by the Committee	336

6.67 Technologies

20

203

Organizational Matters

• SVN/git repository for CDR

CLIC Detector CDR - an example

Contents

Table of Contents					
Execu	tive Summary	9			
1 CI	JC Physics Potential	15			
1.1	Introduction	15			
1.2	Higgs	16			
1.2.1	The Higgs Boson in the Standard Model	18			
1.2.2	The Higgs Bosons of the MSSM	19			
1.2.3	Higgs Bosons in other Extensions	22			
1.3	Supersymmetry	23			
1.3.1	CLIC potential for Heavy SUSY	25			
1.3.2	Recenstructing the High-Scale Structure of the Theory	27			
1.3.3	Testing the Neutralino Dark Matter Hypothesis	28			
1.4	Higgs Strong Interactions	30			
1.5	Z', Contact Interactions and Extra Dimensions	33			
1.6	Impact of Beam Polarisation	37			
1.7	Precision Measurements Potential	40			
1.8	Discussion and Conclusions	42			
2 (1	IC Experimental Conditions and Detector Requirements	51			
2.1	The CLIC Experimental Environment	51			
2.1.1	The CLIC Beam	51			
2.1.2	Beam-Induced Backgrounds	52			
2.1.3	Beam Polarisation at CLIC	56			
2.2	Detector Requirements for e ⁺ e ⁻ Physics in the TeV Range	57			
2.2.1	Trick Momentum Resolution	57			
222	let Energy Resolution	58			
2.2.3	Impact Parameter Resolution and Flavour Tagging	59			
2.2.4	Forward Coverage	50			
2.2.5	Lepton ID Requirements	50			
2.2.6	Summary of Requirements for Physics Reconstruction	61			
2.3	Basic Choice of Detector Concepts for CLIC	61			
2.3.1	The Particle Flow Paradigm	61			
2.3.2	Detector Design Considerations	62			
2.4	Impact of Backgrounds on the Detector Requirements	63			
2.4.1	Impact on the Vertex Detector	63			
2.4.2	Impact on the Central Tracking Detector	63			
2.4.3	Backgrounds in the ECAL and HCAL	64			
2.4.4	Background Summary	66			

2.5 Timing Requirements at CLIC	6
2.5.1 Tim ng in Physics Reconstruction at CLJC	8
2.6 Detector Benchmark Processes	0
2.6.1 Light Higgs Production : $e^+e^- \rightarrow hv_ev_e$	0
2.62 Heavy Higgs Production	0
2.6.3 Production of Right-Handed Squarks	1
2.64 Chargino and Neuralino Pair Production	1
2.65 Slepton Production	2
2.6.6 Top Pair Production at 500 GeV	2
a chicket comme	-
3 CLIC Detector Concepts 72	2
3.1 Kalionale	2
3.2 High Energy CIIC Environment	5
3.3 Design Principles	5
3.4 Subsystems	6
3.5 Detector Parameters	0
4 Vertex Detectors \$	3
4.1 Introduction	3
4.2 Physics Requirements	3
4.3 Simulation Layouts &	4
4.4 Performance Optimisation Studies	5
4.4.1 Performance of the Baseline Configurations	6
4.4.2 Dependence on Single-Point Resolution	7
4.4.3 Dependence on Arrangement of Layers	7
4.44 Material Budget	9
4.5 Beam-Induced Backgrounds in the Vertex Detector Region	9
4.5.1 Beam-Pipe Layout and Design	0
4.5.2 Hit Densities in the Vertex Region	1
4.53 Redation Damage	2
4.6 Integration, Assembly and Access Scenarios	2
4.6.1 Assembly and Integration	2
4.62 Pixel Cooling	3
4.7 Sensor and Readout-Technology R&D	5
4.7.1 Requirements of a CLIC Vertex Detector Sensor	5
4.7.2 Technology Options	5
4.7.3 Vertexing Technological Developments	6
5 CLIC Tracking System 10	1
5.1 mucduction	1
5.2 Tracket Concepts	1
5.2.1 The TPC-Based CLIC_ILD Tracking System	Z

CLIC Detector CDR - an example

5.2.2 The A	Il-Silicon CLIC_SiD Tracking System
5.3 Beam-Ir	nduced Fackgrounds in the Tracking Region
5.3.1 Occup	ancies in the Barrel Strip Detectors of CLIC_ILD
5.3.2 Occup	rancies in the Forward Strip Detectors of CLIC_ILD
5.3.3 Occup	pancies in the TPC
5.3.4 Radia	tion Damage in the Silicon Strip Detectors of CLIC_ILD
5.4 Perform	ance
5.4.1 Track	ing Performance of the TPC-based CLIC_ILD Tracking System
5.4.2 Track	ing Performance of the All-Silicen CLIC_SiD Tracking System
(Charles	
6 Calorimetri	ry 125
6.1 A Parte	te Plow Calon meter for TeV Energies
6.1.1 Tungs	ren as Abserber for the ECAL and HCAL
6.1.2 Time	Stamping Considerations
6.1.3 Reado	Aur Technelogies
6.2 Electron	aagnetic Calorimeter
6.2.1 ECAI	Readout Technologies
6.2.2 BCAI	Prototypes
6.2.3 ECAI	Testbeam Results
6.3 Hadroni	e Calorimeter
6.3.1 Easic	Laycut
6.3.2 HCAI	. Readout Technologies for Scintillator and Gaseous Options
6.3.3 IICAI	L Test Beam Results
6.3.4 Tungs	ten Design and Engineering Studies
6.4 Calorim	eter Performance under CLIC Conditions
6.4.1 ECAI	Performance for High Energy Electrons
6.4.2 Timin	g Resolution
6.4.3 Jet En	ergy Resolution
6.5 Future C	aborimeter R&D for CLIC
7 Detector M	lag net System 145
7 I Introduc	tion 145
7.2 The mar	metic field requirements 145
7.3 Solencia	Coi Desiva 147
7.4 Conduct	tw Options 1/5
7.5 Anti-Sol	lenoid Decien 149
7.6 The Riv	r Oils on the Endom Vale of the CLIC ILD Detector [5]
7.7 Marnet	Services and Pash Pull Scenario [51
Magilet	
8 Muon Syst	emat CLIC 155
8.1 Introduc	tion
8.1.1 Muca	System Requirements

8.1.2 Eackground Conditions	ķ.,
8.2 Conceptual Design of the Muon System 155	5
8.2.1 Muon System Layers	ŝ.
8.2.2 Muon Layer Design	1
8.3 Muon Reconstruction Algorithm and System Performance)
8.3.1 Reconstruction Algorithm)
8.3.2 Reconstruction Performance)
9 Very Forward Calorimeters 161	i.
9.1 Introduction	L
9.2 Optimisation of the Forward Region	5
9.3 The Luminosity Calorimeter (LumiCal)	ŀ
9.3.1 Remarks on systematic uncertainties to the luminosity measurement	1
9.4 The Beam Calorimeter (BeamCal)	1
10 Readout Electronics and Data Acquisition System 171	i.
10.1 Introduction	i.
10.2 Overview of Subdetectors and their Implementation Scheme	1
10.2.1 Overview of Subdetectures	2
10.2.2 Implementation Example for a Pixel Detector	5
10.2.3 Implementation Example for the TPC Pad Readout	ł
10.2.4 Implementation Example for the Analog Calorimeter Readout	į.
10.3 Power Delivery and Power Pulsing	i
10.3.1 Metivation	í
10.3.2 Implementation of Powering Schemes for CLIC Detectors	r
10.3.3 Stability and Reliability Issues	5
10.4 DAQ Aspects)
10.5 Summary	l.
11 CLIC Interaction Region and Detector Integration 185	\$
11.1 Introduction	\$
11.2 Detector Layout	\$
11.2.1 Overal Dimensions and Weights	\$
11.2.2 Magnets, Shielding and the Return Yoke	,
11.2.3 Services Integration)
11.3 Push Pul. Operation	L
11.4 Underground Experimental Area	2
11.5 Forward Region	ł
11.5.1 Forward Region Layout	
	ş.,
11.5.2 Alignment	5
11.5.2 Alignment 199 11.5.3 QD0 Stabilisation Requirements 196	5
11.5.2 Alignment 199 11.5.3 QD0 Stabilisation Requirements 196 11.6 Detector Opening and Maintenance 196	5 5

CLIC Detector CDR - an example

241

249

Darelo 12 Pł

中国科学院高能物理研究所

12 Physics Performance	201
12.1 Simulation and Reconstruction	201
12.1.1 Event Generation	201
12.1.2 Detector Simulation	202
12.1.3 Event Reconstruction	202
12.1.4 Treatment of Background	202
12.2 Luminos:ty Spectrum	203
12.2.1 Lumnosity Spectrum Measurement using Bhabha Events	203
12.2.2 Systematic Effects due to Uncertainty of the Luminosity Spectrum	205
12.3 Performance for Lower Level Physics Observables	205
12.3.1 Particle Identification Performance	205
12.3.2 Mixon and Electron Energy Resolution	206
12.3.3 JetReconstruction	208
12.3.4 Flavour Tagging	212
12.4 Detector Benchmark Processes	213
12.4.1 Light Higgs Decays to Pairs of Bottom and Charm Quarks	213
12.4.2 Light Iliggs Decay to Muons	217
12.4.3 Heavy Higgs Production	220
12.4.4 Freduction of Right-Handed Squarks	223
12.4.5 Slepton Searches	226
12.4.6 Chargino and Neutralino Production at 3 TeV	230
12.4.7 Top Pair Production at 500 GeV	234
12.5 Summary	237

13	Future	Plans and	R&D	Prospects
----	--------	-----------	-----	-----------

	_														
13.1 In	troduction									 					241
13.2 A	ctivities for the next Project Phase									 					241
13.2.1	Simulation Studies and Detector Optimisation									 			• •		241
13.2.2	Physics at CLIC									 					242
13.2.3	Software Development									 					242
13.2.4	Vertex Detector														243
1325	Silicon Tracking														243
13.2.6	TPC-based Tracking									 					243
13.2.7	Calorimetry									 					244
13.2.8	Electronics and Power Delivery									 					244
13.2.9	Magnet and AneiLary Systems									 					245
13.2.10	Engineering and Detector Integration									 					245
Summary										247					

A Acronyms

251

B Simulation and Reconstruction Parameters						
B.1	PFO Lists at 3 TeV	255				
B.2	PFO Lists at 500 GeV	257				
B.3	PYTHIA Parameters	258				
c c	ost Methodology for a CLIC Detector	259				
C.1	Introduction	259				
C.2	Scope of Detector Costing	259				
C.3	Guiding Principles	259				
C.4	Relative Distribution of Cost among the Main Detector Components	260				
C.5	Cost Sensitivity Analysis	261				

Appendix

International Collaboration

• INFN, Italy

• Possible new detector components

中国科学院高能物理研究所

- Full tracker concept, drift chamber tracker, dual readout calorimeter, muon detector
- Electroweak physics studies

Taiwan Collaboration

- Interested in software and physics studies (https://indico.cern.ch/event/579684/overview)
 - Lumical, EW measurements (Sinica), Jet energy scale studies (NCU) and ECAL Studies (Taiwan U)

• Vinca Institute, Belgrade, Serbia

• MOU signed with IHEP

• University of Chicago, USA

- Young Kee-Kim
 - Chicago/Beijing Workshop, June 5-17 (tentative)

Monash University, Australia

- Tong Li (李佟)
- University of Liverpool, UK
 - Yanyan Gao, Lecturer
- Others,
 - Barcelona, Iowa State, Univ. of Geneva, SLAC, Weizmann Institute, Mainz U

Chicago/Beijing Workshop

Date: June 5-17 (tentative)

- Visiting graduate students (~6) from Chicago University
- Fulvio Piccinini (INFN theorist) expert in electroweak physics
- Will invite Lian Tao (Chicago)
- Explore physics issues that can be tackled in 2 weeks!
 - Needs careful preparation
 - Fast simulation using Delphes card
- Finish with I-day workshop at Chicago/Beijing Center with students presenting their results