

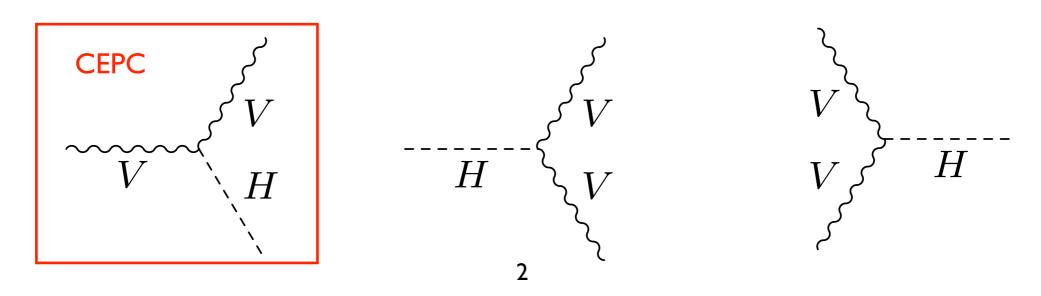
H→ZZ anomalous coupling measurement for CEPC

Yanyan Gao (University of Liverpool)

Ian Anderson,¹ Sara Bolognesi,¹ Fabrizio Caola,¹ Yanyan Gao,² Andrei V. Gritsan,¹ Christopher B. Martin,¹ Kirill Melnikov,¹ Markus Schulze,³ Nhan V. Tran,² Andrew Whitbeck,¹ and Yaofu Zhou¹

CEPC Higgs physics working group meeting, 24-April-2017

Introduction


- The LHC experiments have carved a broad picture of the Higgs boson
 - Overall yields, extreme alternative spin and CP hypothesis
 - Far from confirming the Lorentz structure of the interactions e.g. $H \rightarrow ZZ$

$$A(X_{J=0} \to VV) = \frac{1}{v} \left(g_1 m_V^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$
 SM Higgs High order 0+

• Define experimental measurements "effective fraction of events"

$$f_{gi} = \frac{|g_i|^2 \sigma_i}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4}$$
 $f_{CP} \equiv f_{g4} \equiv f_{a3}$

• CEPC offers a great opportunity to ping down the Lorentz structure of the $H \rightarrow ZZ$

Overview of our paper

- "Constraining anomalous HVV interactions at proton and lepton colliders"
 - Phys. Rev. D 89, 035007 (https://arxiv.org/abs/1309.4819)
 - 4 theorists: K. Melnikov, F. Caola, M. Schulze, Y. Zhou
 - 7 experimentalists: I. Anderson, S. Bolognesi, Y. Gao, A. V. Gritsan, C. Martin, N. Tran, A. Whitebeck
- This paper provided a single consistent framework to estimate the ultimate sensitivities
 of the anomalous couplings measurements of the HVV interaction vertex
 - Developed a consistent MC to model the HVV interaction vertex in productions and decays of the Higgs for both pp and ee colliders
 - Introduce matrix element likelihood approach (MELA) to maximising kinematics usage
 - Used a consistent statistical approach to estimate discovery potentials for HL-LHC/e+e- collider
- Both experimental tools (MC/MELA) are suitable for CEPC Higgs studies
 - Would be nice to repeat born-level analysis with CEPC detector simulation for CDR

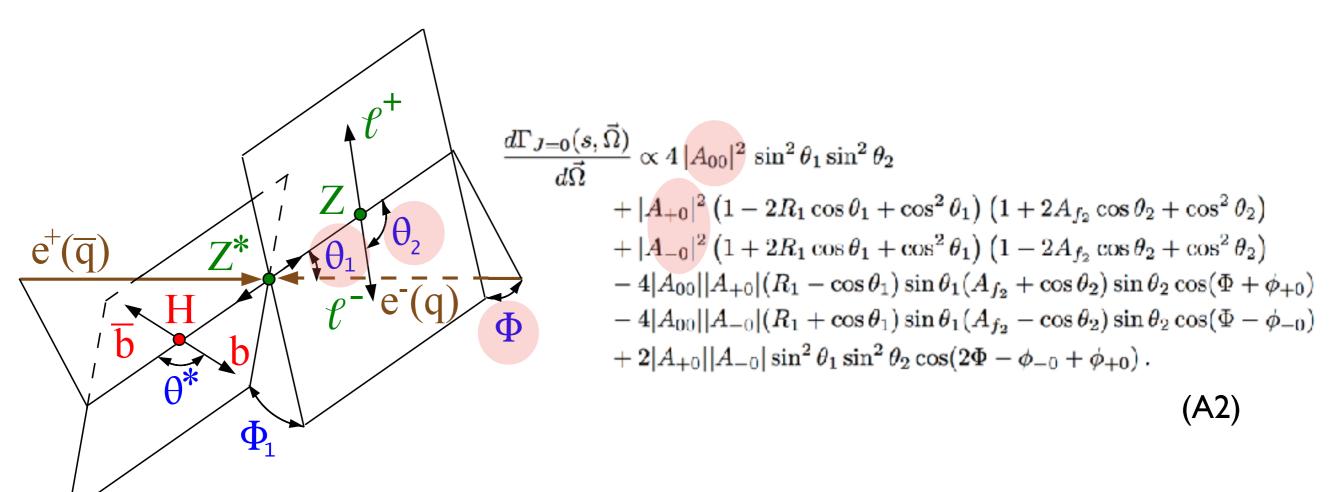
JHUGen generator

- Public generator: http://www.pha.jhu.edu/~spin/
 - JHU stands for Johns Hopkins University as all authors are/were JHU students/pdocs/academics

- Output lhe files, can interface with Pythia and Powheg
- Used extensively in the LHC (CMS/ATLAS) Higgs/EXO analysies in the last 5 years
 - Especially in the $H \rightarrow ZZ \rightarrow 4I$ in the Higgs discovery and CP property measurements phase
 - Sustained extensive validations vs other generators (e.g. madgraph) and internal cross-checks
- e+e- collider sector is added in 2013 for this paper (US Snowmass 2013)
- Happy to support CEPC/SppC studies

Couplings → Helicity amplitudes

- Rewrite the HVV amplitudes in helicity based →kinematic distributions
 - Our earlier papers: https://arxiv.org/pdf/1208.4018.pdf

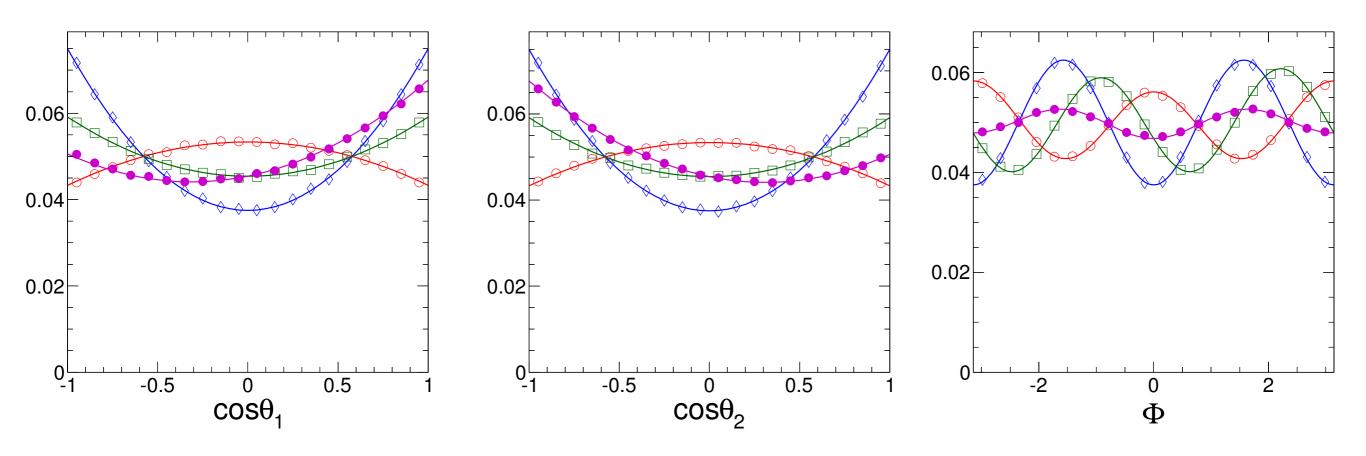

$$A(X o V_1 V_2) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*
u} \left(a_1 g_{\mu
u} m_X^2 + a_2 \, q_\mu q_
u + a_3 \epsilon_{\mu
ulphaeta} \, q_1^lpha q_2^eta
ight)$$

$$a_1 = g_1^{(0)} rac{m_V^2}{m_X^2} + rac{s}{m_X^2} \left(2g_2^{(0)} + g_3^{(0)} rac{s}{\Lambda^2}
ight) \,, \quad a_2 = - \left(2g_2^{(0)} + g_3^{(0)} rac{s}{\Lambda^2}
ight) \,, \quad a_3 = -2g_4^{(0)} \,.$$

$$A_{00} \; = \; -\frac{m_{_X}^2}{v} \left(a_1 \sqrt{1+x} + a_2 \frac{m_1 m_2}{m_{_X}^2} x \right) \; ,$$
 Helicity amplitudes
$$A_{++} \; = \; \frac{m_{_X}^2}{v} \left(a_1 + i a_3 \frac{m_1 m_2}{m_{_X}^2} \sqrt{x} \right) \; ,$$

$$A_{--} \; = \; \frac{m_{_X}^2}{v} \left(a_1 - i a_3 \frac{m_1 m_2}{m_{_X}^2} \sqrt{x} \right) \; ,$$

Angular calculations ↔ helicity amplitudes

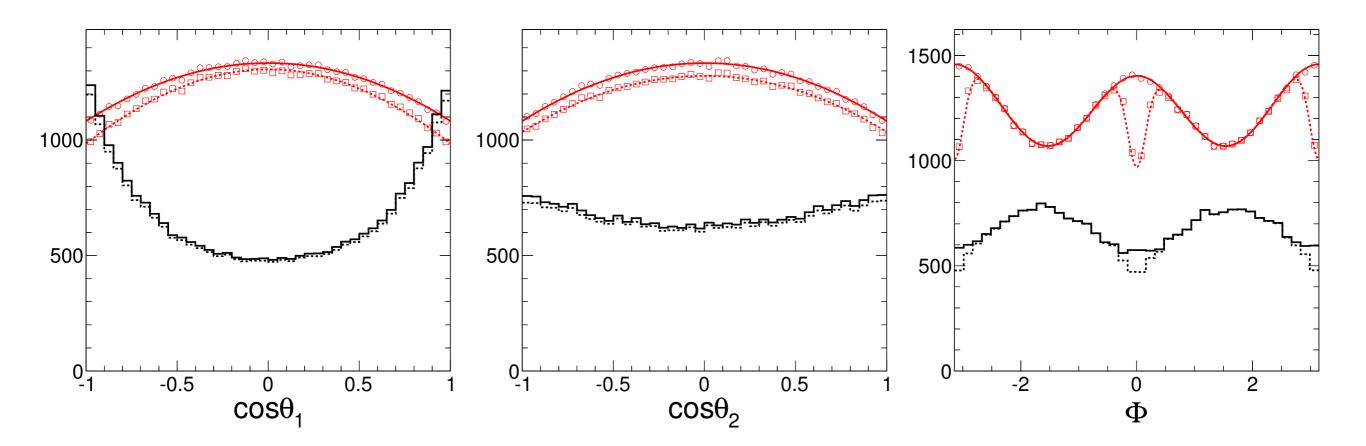

- Five angles are needed to describe the full chain
 - Full kinematics also include constant term m_Z and m_{Z^*} (250 GeV) (Referred to as m1, m2)
- Assume we are dealing with spin-0 Higgs like boson, angular information reduces to
 - $\Omega = \{\theta_1, \theta_2, \phi\}$, depends only on the $Z \rightarrow II$ decays
 - Differential angular distributions are fully predicted (basic QM)
 - These distributions carry information of helicity amplitudes hence couplings

Ideal projections

- Compare the numerical simulation with analytical distributions at born level without cuts
 - First step of validations of both approach

Lines: analytical calculation Dots: JHUGen MC — 0+ — 0- — $f_{CP}=0.5, \varphi=0$ — $f_{CP}=0.5, \varphi=0$

Event selections


- Consider only the (II bb) final states
 - As the H->bb angular information is not used, can easily extend to include other decays
- Acceptance selections
 - Leptons pT > 5 GeV, $|\eta|$ < 2.4
 - Lepton efficiency impact => overal 80% per event level
 - No smearing is applied
- Assume relative 10% background modelled with ZZ->µµbb
 - Back-of-envelope estimations in 2013, very preliminary

	Process	Generator	$\sigma \times BR$	nEvents (250 fb ⁻¹)
Signal	e+e-→ZH→IIbb	JHUGen	9.35 fb	1870
Background	e+e-→ZZ→IIbb	Madgraph	-	187

Acceptance

• Acceptance can be parameterised using step function

$$\mathcal{G}(m_1, m_2, \vec{\Omega}) = \prod_{\ell} \theta(|\eta_{\text{max}}| - |\eta_{\ell}(m_1, m_2, \vec{\Omega})|), \qquad (B6)$$

Statistical analysis to extract couplings (e.g. f_{a3})

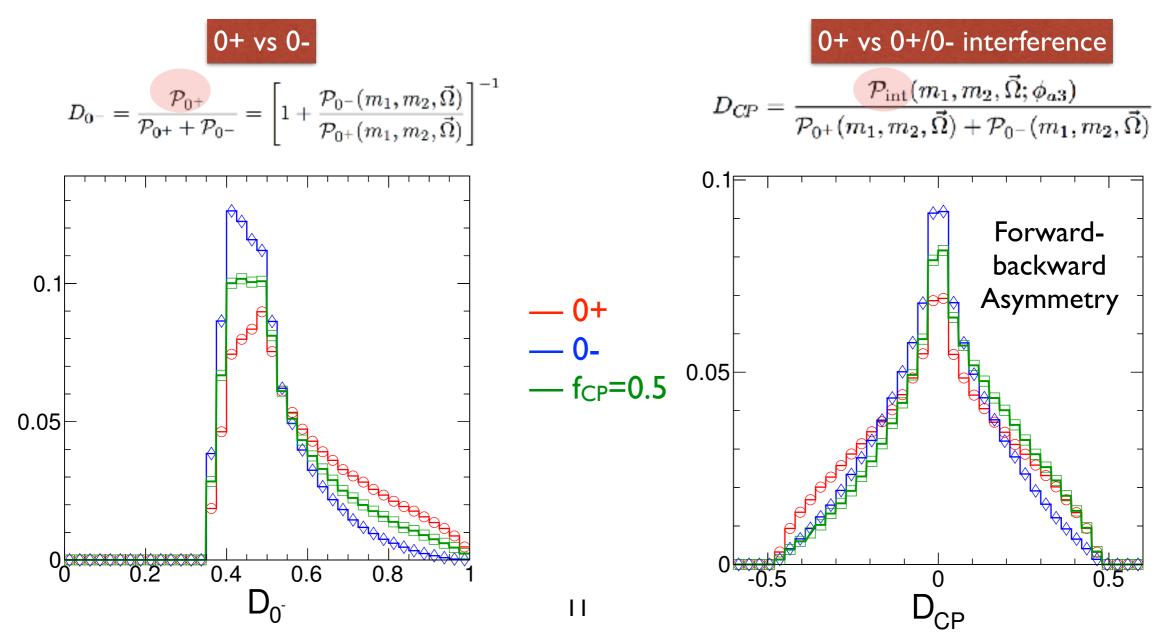
Multi-dimensional fit to observed kinematic distribution through maximum likelihood fit

$$\mathcal{L} = \exp\left(-n_{\text{sig}} - n_{\text{bkg}}\right) \prod_{i}^{N} \left(n_{\text{sig}} \times \mathcal{P}_{\text{sig}}(\vec{x}_i; \ \vec{\zeta}) + n_{\text{bkg}} \times \mathcal{P}_{\text{bkg}}(\vec{x}_i)\right)$$

observables

Parameters of interests

$$\vec{x}_i = \{m_1, m_2, \vec{\Omega}\}_i$$

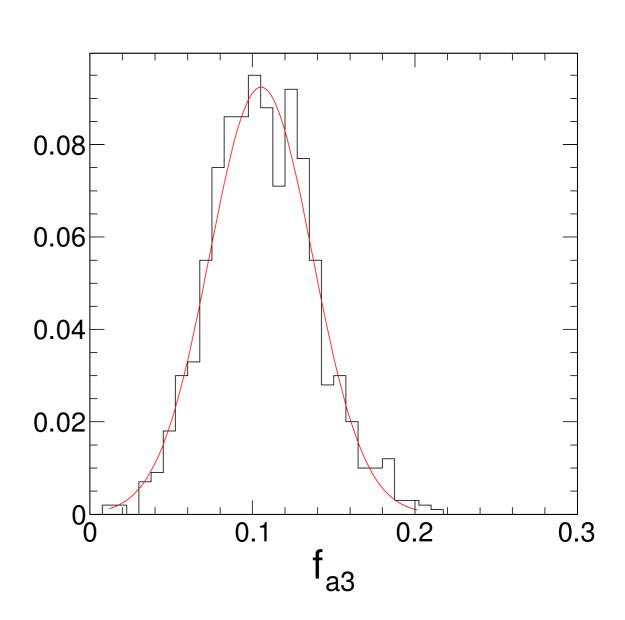

$$\vec{x}_i = \{m_1, m_2, \vec{\Omega}\}_i$$
 $\vec{\zeta} = \{f_{a2}, \phi_{a2}, f_{a3}, \phi_{a3}, ...\}$

$$\mathcal{P}_{\text{sig}}(\vec{x}_i; f_{a3}, \phi_{a3}) = (1 - f_{a3}) \, \mathcal{P}_{0^+}(\vec{x}_i) + f_{a3} \, \mathcal{P}_{0^-}(\vec{x}_i) + \sqrt{f_{a3}(1 - f_{a3})} \, \mathcal{P}_{\text{int}}(\vec{x}_i; \phi_{a3})$$

- Choice of $\vec{x_i}, \vec{\zeta}$
 - Most optimal: full kinematics information in multi-dimensional space
 - Challenging: detector response and background parameterisations in multi-dimensions
 - Balance these two factors also depends on the available statistics

MELA discriminants

- Collapse full angular information (including correlation) into discriminants
 - Particularly useful when statistics is too challenging for a full 3-D fit (used often at LHC H->41)
 - Start from expected probability distributions (full kin.) of interesting processes (e.g. P₀₊, P₀₋)
 - Can be from analytical calculations or numerical values obtained directly from MC program
 - Construct linear combination of relevant processes to separate two hypotheses



Statistical analysis (II)

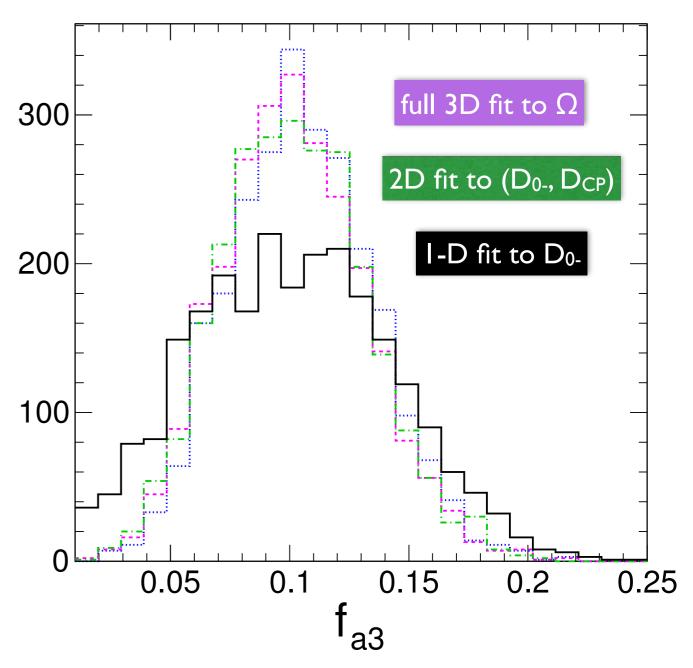
• Quantify 3σ discovery sensitivity for f_{a3}

$$f_{a3}/\sigma(f_{a3}) = 3$$

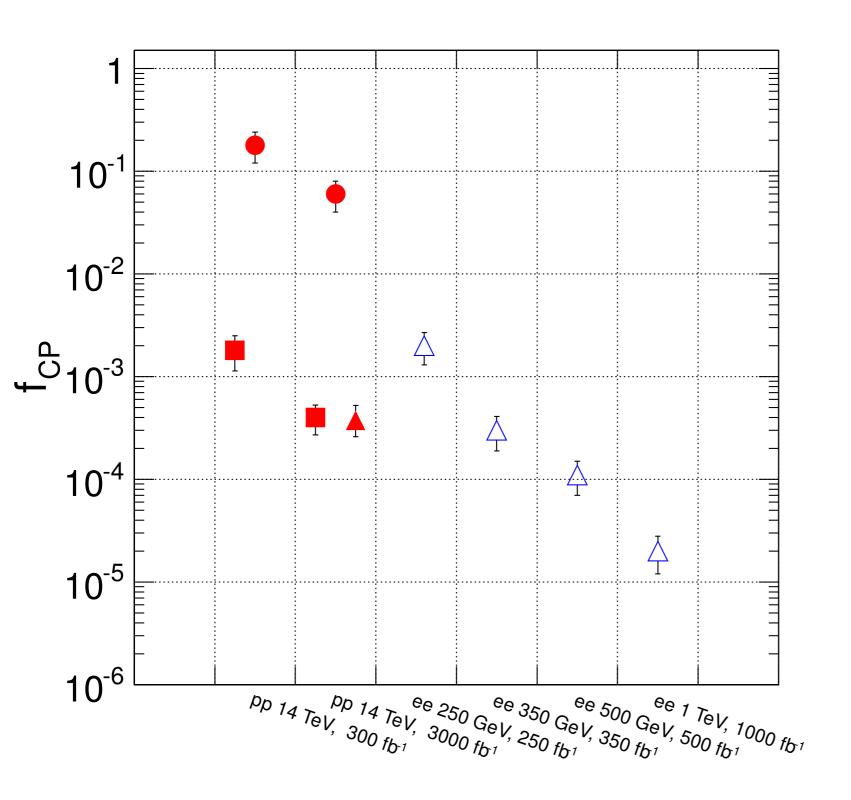
- Sample through different fa3 values
- For a given f_{a3} perform pseudo-experiments to evaluate the expected precision of f_{a3}
 - Generate 1000 pseudo-datasets either from expected probability function or MC datasets
 - For each toy data we perform ML fit
 - Check output of these 1000 fits
 - Verify fit quality by checking pull distributions
 - Take Gaussian error of the fitted fa3 as $\sigma(fa3)$

Compare different approaches

Illustrate the loss of sensitivity using partial kinematics


1D:
$$\vec{x}_i = \{D_{0^-}\}_i, \vec{\zeta} = \{f_{a3}\}$$

2D:
$$\vec{x}_i = \{D_{0^-}, D_{CP}\}_i, \vec{\zeta} = \{f_{a3}, \phi_{a3}\}$$


3D:
$$\vec{x}_i = \{\theta_1, \theta_2, \phi\}_i, \vec{\zeta} = \{f_{a3}, \phi_{a3}\}$$

- Using signal only fits
 - Conclusion does not change when including background
- Main loss in ID fit ignoring interference
 - Interference scales to sqrt(fa3)
 - important for small fa3
- Sensitivity is recovered by adding D_{CP}

Generate: fa3 = 0.18

Global picture

- LHCVBF and pp->ZH analysis can deteriorate drastically as pileup 1
- What about f_{CP} constraints instead of discovery?
- What about ee→ZH including detector simulation and inclusive H decay?

Summary and future plans

- Anomalous coupling measurement of HZZ interaction vertex is interesting for the CEPC
- Introduced two experimental tools suitable for CEPC/SppC
 - JHUGen MC generator
 - Matrix element likelihood approach
- Presented very rough sensitivity studies using born-level quantities
 - Quantified as the discovery potential for a given fcp
- Very interested in applying the similar techniques to CEPC detector simulation
 - Can be added as a straightforward plug-in on top of the existing analyses
 - Ideal I-2 months project for students
 - Look for collaborators
 - Otherwise, can this be added as it is for CEPC CDR?