

Measurement of $BR(H \rightarrow \gamma \gamma)$ via $Z \rightarrow q \bar{q}$ channel in e^+e^- colliders at 250 GeV

Yitian Sun May 8th, 2017

I. Introduction.

- $e^+e^- \rightarrow ZH \rightarrow q\bar{q}\gamma\gamma$ as part of the measurement of BR($H \rightarrow \gamma\gamma$).
- II. Signal and background.
- III. Photon recovery in the di-jet environment.
- IV. Event selection (motivation and optimization).
- V. Uncertainty of the BR measurement (Monte Carlo).
- VI. Dependence on Ecal performance and photon reconstruction.

II. Signal & Background.

event#	signal	irreducible background			
5ab ⁻¹ expect:	1633	11011914			
full simulation:	40000	11300000			

SM expect: $BR(H \rightarrow \gamma \gamma) = 0.23\%$ at $M_{Higgs} = 125$ GeV.

III. Photon recovery.

General reconstruction: single γ: ~ 90% pair γ: ~ 81%

May caused by conversion; to save.

III. Photon recovery.

Additional reconstruction:* for all pairs of e⁺e⁻: momentum angle < 19 deg, invariant mass < 5 GeV, clean cone of 7 deg radius.

Efficiency boost:					
γ1:	90.8%	97.1%			
γ2:	90.7% →	95.3%			
pair:	82.5%	92.5%			

	recon	!recon	recon	!recon
!conv	83.58%	1.43%	83.07%	2.55%
conv	13.50%	1.50%	12.26%	2.12%
total	97.08%	2.92%	95.33%	4.67%

γ1

*Motivated by Boos, 2000.

γ2

- How to separate signal from background?
- Guideline:
 - Signal has <u>1 degree of freedom less</u> than irreducible background. However, should not exploit this until fitting.
 - Differences in distribution are always related to <u>external</u> <u>geometry</u> (like z-axis).
 - Cut1 Paraxial ISR. Direction consideration require a 2D cut.

g1CosPolar:g2CosPolar IIIS0gd{1 }

g1CosPolar:g2CosPolar IIIS0gd{1 }

Optimized w.r.t. G=S/VS+B, where S and B signal and background event counting with diphoton invariant mass in the range 125+/-3 GeV (~ signal width).

- How to separate signal from background?
- Guideline:
 - Signal has 1 degree of freedom less than irreducible background. However, should not exploit this until fitting.
 - Differences in distribution are always related to external geometry (like z-axis).
 - Cut1 Paraxial ISR. Direction consideration require a 2D cut.
 - Cut2 Angle with recoil momentum: further exploit the paraxial feature.

- How to separate signal from background?
- Guideline:
 - Signal has 1 degree of freedom less than irreducible background. However, should not exploit this until fitting.
 - Differences in distribution are always related to external geometry (like z-axis).
 - Cut1 Paraxial ISR. Direction consideration require a 2D cut.
 - Cut2 Angle with recoil momentum: further exploit the paraxial feature.
 - Cut3 Trimming in E-M plane of di-photon system for better projection.

ggM:ggE IIIS0gd{1 2 3 }

ggM:ggE IIIS0gd{1 2 3 }

- How to separate signal from background?
- Guideline:
 - Signal has 1 degree of freedom less than irreducible background. However, should not exploit this until fitting.
 - Differences in distribution are always related to external geometry (like z-axis).
 - Cut1 Paraxial ISR. Direction consideration require a 2D cut.
 - Cut2 Angle with recoil momentum: further exploit the paraxial feature.
 - Cut3 Trimming in E-M plane of di-photon system for better projection.
 - Precut simply loosen up the event selection criterion.

IV. Event selection: Cuts

- Polar angle $\cos \theta_{\gamma} < 0.99$; energy E > 25 GeV.
- Polar angles satisfy $(\cos \theta_{\gamma 1}+1)(\cos \theta_{\gamma 2}-1) < -0.07$ and $(\cos \theta_{\gamma 1}-1)(\cos \theta_{\gamma 2}+1) < -0.07$.
- Angle with recoil momentum

 $\cos \theta_{\gamma 1, recoil} > -0.95$ and $\cos \theta_{\gamma 2, recoil} < 0.70$. • Invariant mass- Energy plane of di-photons system $E_{\gamma \gamma} < 0.48 * M_{\gamma \gamma} + 83$ and $E_{\gamma \gamma} > 0.74 * M_{\gamma \gamma} + 41$. Unit: GeV

Precut.

- Polar angle $\cos \theta_{v} < 0.99$; energy E > 25 GeV.
- Polar angles satisfy $(\cos\theta_{\gamma 1}+1)(\cos\theta_{\gamma 2}-1) < -0.05$ and $(\cos\theta_{\gamma 1}-1)(\cos\theta_{\gamma 2}+1) < -0.05$.
- Invariant mass of di-photons system 100 GeV < $M_{\gamma\gamma}$ < 160 GeV.

Background reduced to 326503 expected (from 11011914). Signal not significantly affected.

IV. Event selection: Efficiency.

122 GeV < M _{vv} < 128 GeV		UnCut	Cut0	Cut1	Cut2	Cut3
SIGNAL	Event:	24078	23909	18489	16027	14238
	Expect:	982	976	754	654	581
	AccumuEff:	100%	99.30%	76.79%	66.56%	59.13%
	StageEff:	100%	99.30%	77.33%	86.68%	88.84%
	Event:	335045	17724	16402	9897	6339
BACK-	Expect:	326503	17272	15983	9644	6177
GROUND*	AccumuEff:	100%	5.29%	4.90%	2.95%	1.89%
	StageEff:	100%	5.29%	92.54%	60.34%	64.05%
113 GeV < M _{vv} < 150 GeV						
SIGNAL	Event:	37154	36540	27597	23821	20296
	Expect:	1516	1491	1126	972	828
	AccumuEff:	100%	98.35%	74.28%	64.11%	54.63%
	StageEff:	100%	98.35%	75.53%	86.32%	85.20%
BACK- GROUND*	Event:	335045	92362	85041	51049	29900
	Expect:	326503	90007	82872	49747	29137
	AccumuEff:	100%	27.57%	25.38%	15.24%	8.92%
	StageEff:	100%	27.57%	92.07%	60.03%	58.57%

Near signal. G = S/VS+B= 7.07

Fit region.

* background # is after precut

V. Uncertainty of BR measurement

Di-photon invariant mass (after selection).

V. Uncertainty: MC results

for current photon recovery efficiency of 92.5% and signal width of 2.9 GeV: Signal count S Truth = 828. Fitted S = 850 +/- 131 (15.4%). Fit program reported uncertainty mean: 15.86% +/- 0.06% (0.4%). systematic shift (2.7%) \oplus statistical uncertainty (15.4%) \approx 15.6%

Fitted signal events number

Fit relative uncertainty

VI. Dependence on Ecal and photon recovery

Agrees well apart from small uniform shift (shown before)

Conclusion.

- Motivated and optimized photon recovery algorithm and event selection for this specific channel.
- Uncertainty of BR(H--> $\gamma\gamma$) = 15.6%.
- Dependence on Ecal performace and photon recovery as expected.

