

Updates about Higgs Combination Measurement on CEPC

ZhangKaili¹ WangJin²

IHEP¹

University of Sydney²

2017-05-22

Higgs Combination

- Individual Higgs channel analysis
 - correlations between different signal modes were not taken into account
 - the ZH backgrounds in one channel is another channel's signal
 - should consider in the fit of the cross section and the constrain of the couplings.
 - systematics and their correlations are difficult to address
- We introduce combination measurement
 - uniformed, simultaneous statistical procedure and framework
 - can easily include necessary correlations
 - gives more potential for future interpretation of the results

Fit techniques

PDF for fit: signal: CB ball + Gaussian bkg: 2rd poly exp

- Workspace: the likelihood model container
- Input: invariant/recoil mass spectrum
- POI_{(parameter of interest}): $\sigma * Br, Br,$ Higgs coupling κ
- Asimov s+b dataset
 - the median of $f(q_{\mu}|H_0)$
 - suppresses statistic uncertainties.
 - parameters all replaced to their expected value
- NP_{(nuisance parameter}): function & constrains in model besides POI
 - hold systematic uncertainties
 - correlated NP share the same name
 - currently we set $\Delta \sigma = 0.5\%$, $\Delta Lumi = 0.1\%$

More NP awaiting settlement.

Actually now we fit out the uncertainties on signal strength μ , which equals to relative uncertainties on $\sigma * Br$

Channels Table (now 29)

*H->ee/e μ not listed since low stats.

Signal		Who takes			Signal		Who takes	
Z	Н	charge	Last upuate		Z	Н	charge	Last update
H->qq						H->ZZ		
ee	bb	– ZhenXing	2016.9	qq group use template fit with b-tagging to determine the ratio, and the higgs mass spectrum of bb/cc/gg is indistinguishable. Here the result is only statistics effect. To be developed.	vv	μμϳϳ		
	сс				μμ	vvjj	Yuqian	2016.9
	gg				ee	vvjj		
μμ	bb				qq	vvvv	MoXin	2016.8
	СС				H->WW			
	gg				μμ	μνμν		
	bb	Baiyu	2016.8			evev		
qq	сс					evµv		
	gg					evqq		
$H \rightarrow \gamma \gamma$				μvqq	7			
II		Feng	2015	with problem, waiting to fix	ee	μνμν	Libo	2017.4
vv	γγ					evev		
qq		Yitian	2017.4			evμv		
Others				evqq				
μμ	ττ	Dan	2016.8			μvqq		
Inc.	μμ	Cui	2016.8		vv	qqqq		
2017/5/2	22				μμ	qqqq	Yuqian	Preparing

4

Signal yields

Sig	nal	Observed	Expect Before cut flow		
Z	Н	Observed			
H->qq					
	bb	7805	20586		
ee	сс	361	961		
	gg	1242	3062		
	bb	12326	20586		
μμ	сс	615	961		
	gg	1755	3062		
	bb	148749	428876		
qq	сс	3887	20034		
	gg	25564	63812		
Η→γγ					
11		90	164		
vv	γγ	328	488		
qq		828	1707		
Others					
μμ	ττ	1658	2257		
Inc.	μμ	47	233		

*Obsdata provided by each individual analysist.

Sig	nal	Observed	Expect		
Z	Н	Observed	Before cut flow		
H->ZZ					
VV	μμϳϳ	190	264		
μμ	vvjj	72	264		
ee	vvjj	209	264		
qq	qq vvvv		784		
H->WW					
	μνμν	52	87		
	evev	36	88		
μμ	evμv	105	175		
	evqq	663	1111		
	μvqq	717	1103		
	μνμν	44	87		
	evev	22	88		
ee	evμv	81	175		
	evqq	612	1112		
	μνqq	684	1104		
VV	qqqq	9022	20808		

Fit Result

	PreCDR	Manqi's on Aug 2016	My result of $\Delta(Br * \sigma)$	My result of ΔBr
$\sigma(ZH)$	0.51%	0.50%	set to 0.50%	
$\Delta(Br*\sigma)$	0.28%	Not shown	0.23%	0.56%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.21%	0.25%	0.57%
$\sigma(ZH) * Br(H \rightarrow cc)$	2.1%	2.5%	2.73%	2.82%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.6%	1.3%	1.16%	1.26%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.5%	1.0%	1.24%	1.35%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.3%	4.3%	5.72%	5.75%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	1.2%	1.0%	3.12%	3.21%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	9.0%	9.0%	8.21%	8.23%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	17%	19.4%	19.4%
$\sigma(ZH) * Br(H \rightarrow inv.)$	95% CL, 1.4e-3	1.4e-3		237%

Results are compatible.

Next step to do

- Updates whenever new histogram is ready.
- Improve fit strategy
- Introduce NPs into framework
- Turn to κ -parameterization framework for future research

backups

CEPC: Simulation Studies

	PreCDR (Jan 2015)	Now (Aug 2016)
σ(ZH)	0.51%	0.50%
σ(ZH)*Br(H→bb)	0.28%	0.21%
σ(ZH)*Br(H→cc)	2.1%	2.5%
σ(ZH)*Br(H→gg)	1.6%	1.3%
σ (ZH)*Br(H \rightarrow WW)	1.5%	1.0%
σ (ZH)*Br(H \rightarrow ZZ)	4.3%	4.3%
σ(ZH)*Br(H→π)	1.2%	1.0%
σ(ZH)*Br(H→γγ)	9.0%	9.0%
$\sigma(ZH)^*Br(H \rightarrow Z\gamma)$	-	~4 σ
σ(ZH)*Br(H→μμ)	17%	17%
σ(vvH)*Br(H→bb)	2.8%	2.8%
Higgs Mass/MeV	5.9	5.0
σ(ZH)*Br(H→inv)	95%. CL = 1.4e-3	1.4e-3
Br(H→ee/emu)	-	1.7e-4/1.2e-4
Br(H→bbχχ)	<10 ⁻³	3.0e-4

 $ee/\mu\mu/qq + bb/cc/gg$ plot

Here ee signal data/pdf actually is the same, see signal plots. To be solved.

Mass Spectrum mmgg

$\gamma\gamma$ plot

Old II+ $\gamma\gamma$ plot

Old $qq+\gamma\gamma$ plot

Old nn+ $\gamma\gamma$ plot

Current qq+ $\gamma\gamma$ plot

WW plot

ZZ plot

Other ZZ channel are less sensitive, to be continued

Signal plot

Signal plot

Signal plot

