Higgs EFT at future lepton colliders

Jiayin Gu

DESY & IHEP

Higgs physics toward CDR meeting July 19, 2017

[arXiv:1704.02333] G. Durieux, C. Grojean, JG, K. Wang and current work with N. Craig, S. Di Vita, G. Durieux, C. Grojean, Z. Liu, G. Panico, M. Riembau, T. Vantalon

Introduction

Introduction

- Higgs and nothing else? What next?
- ▶ An e⁺e⁻ collider is an obvious direction to go.
- ► Higgs factory ($e^+e^- \to hZ$ at 240-250 GeV, $e^+e^- \to \nu\bar{\nu}h$ at higher energies), and many more other measurements.
- The scale of new physics Λ is large ⇒ EFT is a good description at low energy.
- A global analysis of the Higgs coupling constraints, in the EFT framework.
- Robust constraints on the triple Higgs coupling at both circular and linear colliders. (2nd part of this talk)

Introduction Global fit in the EFT framework Results Conclusion

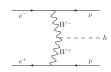
Future e^+e^- colliders

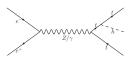
Circular colliders

- ► The Circular Electron-Positron Collider (CEPC) in China.
- The Future Circular Collider (FCC-ee) at CERN.
- 91 GeV(Z-pole), 160 GeV(WW), 240 GeV(hZ) and 350 GeV(tt).
- Large luminosity.
- A natural step towards a 100 TeV hadron collider.

Linear colliders

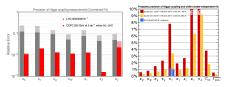
- The International Linear Collider (ILC) in Japan.
- The Compact Linear Collider (CLIC) at CERN.
- ► ILC: 250 GeV, 350 GeV, 500 GeV and possibly 1 TeV.
- CLIC: 350(380) GeV, 1.4(1.5) TeV and 3 TeV.
- Can go to higher \sqrt{s} , and also implement longitudinal beam polarizations.




Higgs measurements

Introduction

- $e^+e^- \rightarrow hZ$, cross section maximized at around 250 GeV.
- $e^+e^- \rightarrow \nu \bar{\nu} h$, cross section increases with energy.
- At higher energies (not available at circular colliders)
 - $e^+e^- \rightarrow t\bar{t}h$ (top Yukawa).
 - $e^+e^- o Zhh$ and $e^+e^- o
 u \bar{
 u} hh$ (triple Higgs coupling).



Jiayin Gu

κ framework vs. EFT

From the CEPC preCDR and "Physics Case for the ILC" ([arXiv:1506.05992])

 Conventionally, the constraints on Higgs couplings are obtained from global fits in the so-called "κ" framework.

$$g_h^{\mathrm{SM}} o g_h^{\mathrm{SM}} (1 + \kappa)$$
 .

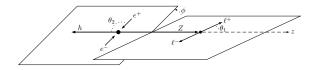
- Anomalous couplings such as $hZ^{\mu\nu}Z_{\mu\nu}$ or $hZ_{\mu}\partial_{\nu}Z^{\mu\nu}$ are assumed to be zero.
- EFT framework
 - Assuming v ≪ Λ, leading contribution from BSM physics are well-parameterized by D6 operators.
 - Gauge invariance is built in the parameterization.
- ▶ Lots of parameters! (Is it practical to perform a global fit?)

The "12-parameter" framework in EFT

- Assume the new physics
 - is CP-even,
 - does not generate dipole interaction of fermions,
 - only modifies the diagonal entries of the Yukawa matrix,
 - has no corrections to Z-pole observables and W mass (more justified if the machine will run at Z-pole).
- Additional measurements
 - ▶ Triple gauge couplings from $e^+e^- \to WW$. (The LEP constraints will be improved at future colliders.)
 - ▶ Angular observables in $e^+e^- \to hZ$.
 - ▶ $h \rightarrow Z\gamma$ is also important.
- Only 12 combinations of operators are relevant for the measurements considered (with the inclusion of the Yukawa couplings of t, c, b, τ, μ).
- All 12 EFT parameters can be constrained reasonably well in the global fit!

EFT basis

 We work in the Higgs basis (LHCHXSWG-INT-2015-001, A. Falkowski) with the following 12 parameters,

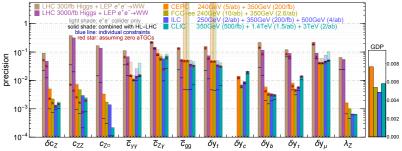

$$\delta c_{Z}\,,\;\;c_{ZZ}\,,\;\;c_{Z\square}\,,\;\;c_{\gamma\gamma}\,,\;\;c_{Z\gamma}\,,\;\;c_{gg}\,,\;\;\delta y_{t}\,,\;\;\delta y_{c}\,,\;\;\delta y_{b}\,,\;\;\delta y_{ au}\,,\;\;\delta y_{\mu}\,,\;\;\lambda_{Z}\,.$$

- The Higgs basis is defined in the broken electroweak phase.
- ▶ Couplings of h to W are written in terms of couplings of h to Z and γ .
- ▶ 3 aTGC parameters ($\delta g_{1,Z}$, $\delta \kappa_{\gamma}$, λ_{Z}), 2 written in terms of Higgs parameters.
- It can be easily mapped to the following basis with D6 operators.

$\mathcal{O}_H = \frac{1}{2} (\partial_\mu H^2)^2$	$\mathcal{O}_{GG} = g_s^2 H ^2 G_{\mu\nu}^A G^{A,\mu\nu}$
$\mathcal{O}_{WW} = g^2 H ^2 W_{\mu\nu}^a W^{a,\mu\nu}$	$\mathcal{O}_{y_U} = y_U H ^2 \bar{Q}_L \bar{H} u_R$
$\mathcal{O}_{BB} = g'^2 H ^2 B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{Y_d} = y_d H ^2 \bar{Q}_L H d_R$
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_e} = y_e H ^2 \bar{L}_L He_R$
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a \nu}_{\mu} W^{b \nu}_{\nu \rho} W^{c \rho \mu}$

Jiayin Gu

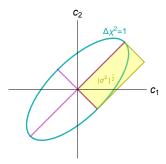
angular observables in $e^+e^- o hZ$


- Angular distributions in $e^+e^- \rightarrow hZ$ can provide information in addition to the rate measurement alone.
- Previous studies
 - [arXiv:1406.1361] M. Beneke, D. Boito, Y.-M. Wang
 - [arXiv:1512.06877] N. Craig, JG, Z. Liu, K. Wang
- 6 independent asymmetry observables from 3 angles

$$A_{\theta_1} , A_{\phi}^{(1)} , A_{\phi}^{(2)} , A_{\phi}^{(3)} , A_{\phi}^{(4)} , A_{c\theta_1,c\theta_2}^{(6)} .$$

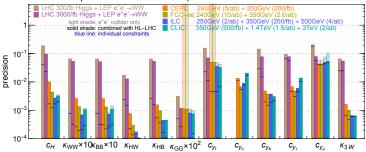
 Focusing on leptonic decays of Z (good resolution, small background, statistical uncertainty dominates).

Results of the "12-parameter" fit


precision reach of the 12-parameter fit in Higgs basis

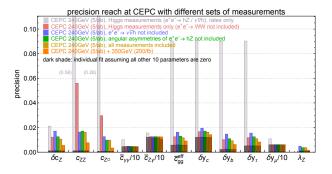
- Assuming the following run plans (no official plan for CEPC 350 GeV run yet)
 - CEPC 240 GeV(5/ab) + 350 GeV(200/fb)
 - FCC-ee 240 GeV(10/ab) + 350 GeV(2.6/ab) 1
 - ► ILC 250 GeV(2/ab) + 350 GeV(200/fb) + 500 GeV(4/ab)
 - CLIC 350 GeV(500/fb) + 1.4 TeV(1.5/ab) + 3 TeV(2/ab)

 $^{^{1}}$ The luminosities of FCC-ee have been recently updated to 240 GeV(5/ab) + 350 GeV(1.5/ab), see talks at the FCC week 2017.


GDP

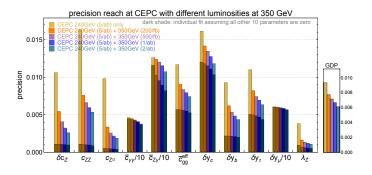
- Global Determinant Parameter (GDP $\equiv \sqrt[2n]{\det \sigma^2}$).
- Ratios of GDPs are basis-independent.
- Anti-capitalism definition: smaller GDP → better precision!

If you don't like the Higgs basis...

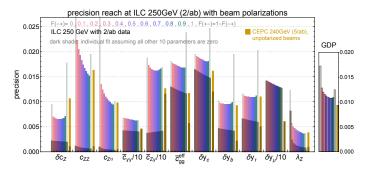

precision reach of the 12-parameter fit in the SILH' basis

▶ Results in the SILH'(-like) basis ($\mathcal{O}_{W, B} \to \mathcal{O}_{WW, WB}$)

$$\begin{split} \mathcal{L}_{\mathrm{D6}} &= \frac{c_{H}}{v^{2}} \mathcal{O}_{H} + \frac{\kappa_{WW}}{m_{W}^{2}} \mathcal{O}_{WW} + \frac{\kappa_{BB}}{m_{W}^{2}} \mathcal{O}_{BB} + \frac{\kappa_{HW}}{m_{W}^{2}} \mathcal{O}_{HW} + \frac{\kappa_{HB}}{m_{W}^{2}} \mathcal{O}_{HB} \\ &+ \frac{\kappa_{GG}}{m_{W}^{2}} \mathcal{O}_{GG} + \frac{\kappa_{3W}}{m_{W}^{2}} \mathcal{O}_{3W} + \sum_{f=t,c,b,\tau,\mu} \frac{c_{y_{f}}}{v^{2}} \mathcal{O}_{y_{f}} \;. \end{split}$$


The importance of combining all measurements

- The results are much worse if we only include the rates of Higgs measurements alone!
- There is some overlap in the information from different measurements.
- Measurements at different energies can be very helpful.


roduction Global fit in the EFT framework Results Conclusion

Impact of the 350 GeV run

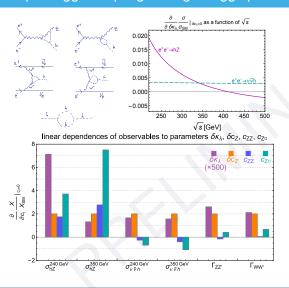
- Advantages of the 350 GeV run
 - Much better measurement of the WW fusion process ($e^+e^- o
 u \bar{\nu} h$).
 - ▶ Probing $e^+e^- \rightarrow hZ$ at a different energy.
 - ▶ Improving constraints on aTGCs ($e^+e^- \rightarrow WW$).
- Very helpful in resolving the degeneracies among parameters!

CEPC 240 GeV vs. ILC 250 GeV

- Beam polarization helps discriminate different parameters.
 - Two polarization configurations are considered, $P(e^-, e^+) = (-0.8, +0.3)$ and (+0.8, -0.3).
 - ightharpoonup F(-+) in the range of 0.6-0.8 gives an optimal overall results.
- Large luminosity still wins (but it is important to include all possible measurements).

The Higgs self-coupling at e^+e^- colliders

(current work with N. Craig, S. Di Vita, G. Durieux, C. Grojean, Z. Liu, G. Panico, M. Riembau, T. Vantalon)

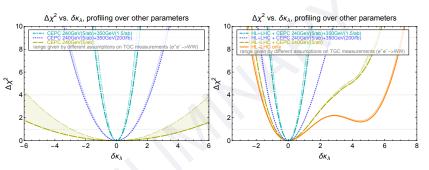

Triple Higgs coupling

$$\kappa_{\lambda} \equiv \frac{\lambda_{hhh}}{\lambda_{hhh}^{SM}}, \ \delta \kappa_{\lambda} \equiv \kappa_{\lambda} - 1 \ = \textbf{\textit{c}}_{6} - \frac{3}{2}\textbf{\textit{c}}_{H}, \ \ \text{with} \ \mathcal{L} \supset -\frac{\textbf{\textit{c}}_{6}\lambda}{\textbf{\textit{v}}^{2}}(H^{\dagger}H)^{3}$$

- ▶ HL-LHC: $\sim \mathcal{O}(1)$ determination. ($\kappa_{\lambda} \in [-0.8, 7.7]$ at 95% CL from Atlas projection for the $b\bar{b}\gamma\gamma$ channel, ATL-PHYS-PUB-2017-001)
- Linear colliders: direct measurements with $e^+e^- o Zhh$, $e^+e^- o
 u \bar{\nu} hh$.
 - ► ILC: 26.6% at 500 GeV (4 ab⁻¹) [C. F. Dürig, PhD thesis, Hamburg U. (2016)]
 - CLIC: 40%-54% at 1.4 TeV (1.5 ab⁻¹) and 22%-29% at 3 TeV (2 ab⁻¹) (Higgs Physics at CLIC [arXiv:1608.07538]).
 - Are these bounds robust under a global analysis in an EFT framework?
- Circular colliders: probe indirectly via the loop contribution in $e^+e^- \rightarrow hZ$ ([arXiv:1312.3322] M. McCullough).
 - ▶ TLEP (FCC-ee) 240 GeV: $|\delta\kappa_{\lambda}|\lesssim$ 28% assuming all other Higgs couplings are SM-like.
 - What if other Higgs couplings are not SM-like?
- ► A global analysis in the 12+1 parameter framework!

Jiayin Gu

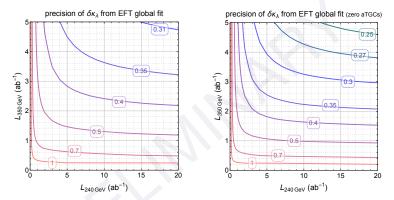
Triple Higgs coupling in single Higgs processes



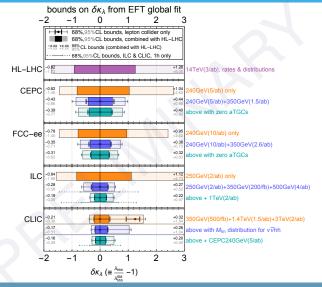
- One loop corrections to all Higgs couplings (production and decay).
- 240 GeV: hZ near threshold (more sensitive to $\delta \kappa_{\lambda}$)
- at 350 GeV:

Results

- WW fusion
- hZ at a different energy
- h → WW*/ZZ* also have some discriminating power (but turned out to be not enough).


χ^2 vs. $\delta \kappa_{\lambda}$ from global fits at CEPC

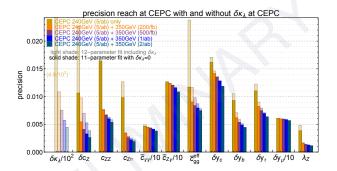
- 240 GeV + 350 GeV much better than 240 GeV alone!
- ▶ 240 GeV alone can improve on the top of HL-LHC bounds.
- HL-LHC: Both single and double Higgs measurements, inclusive and differential. [arXiv:1704.01953] Di Vita, Grojean, Panico, Riembau, Vantalon [arXiv:1502.00539] Azatov, Contino, Panico, Son


oduction Global fit in the EFT framework Results Conclusion

The precision reach of $\delta \kappa_{\lambda}$ at circular colliders

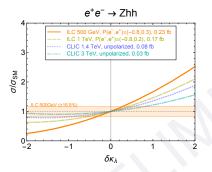
- The precision reach of $\delta \kappa_{\lambda}$ in the luminosity plane (luminosities at 240 GeV and 350 GeV).
- e⁺ e[−] → WW measured very well ⇒ setting aTGCs to zero is a good approximation.

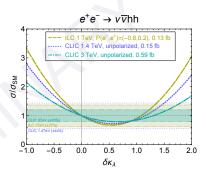
A summary of the (future) bounds on $\delta \kappa_{\lambda}$


Conclusion (and how to write the CDR)

- It makes sense to go beyond the " κ " frame and study Higgs physics in the EFT framework.
- We can obtain strong and robust constraints on the coefficients of the relevant dimension-6 operators!
- Choice of basis (my personal view)
 - ▶ Higgs basis: closet thing to " κ " frame, yet essentially a D6 EFT.
 - A convenient choice of D6 operators works equally fine, and the translation is straightforward.
- The 350 GeV run is good!
 - Very helpful in discriminating hVV type couplings with different Lorentz structures.
 - Crucial for obtaining robust constraints on the triple Higgs coupling.
 - How much luminosity do we want?
- Unanswered questions...
 - What's the impact of a future Z-pole run?
 - ▶ How well can aTGCs be constrained from $e^+e^- \rightarrow WW$? (Experimental studies desired.)
 - Include Higgs invisible/exotic decay?

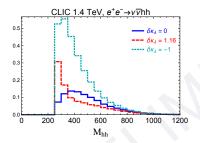
backup slides

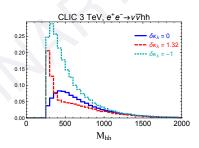

oduction Global fit in the EFT framework Results Conclusion


Impact of $\delta \kappa_{\lambda}$ on the other parameters

- Adding one more parameter could worsen the bounds on others.
- The effect is under control if the degeneracies are well-resolved.
- ▶ The HL-LHC bounds on $\delta \kappa_{\lambda}$ can also help.

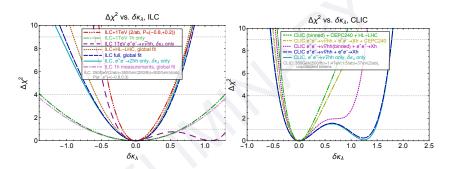
Double-Higgs measurements



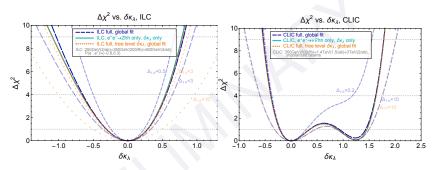


- ▶ Diagram with λ_{hhh} interferes with diagrams without λ_{hhh} .
- $e^+e^- \to \nu \bar{\nu} hh$ has destructive interference! Important to keep both the linear and the square term.

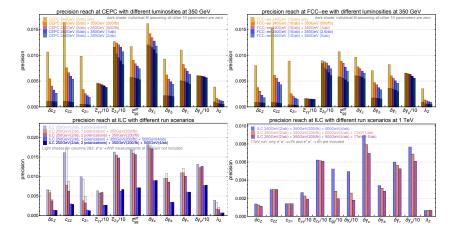
roduction Global fit in the EFT framework Results Conclusion


M_{hh} of $\nu \bar{\nu} hh$

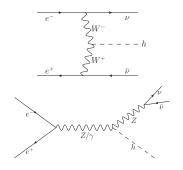
▶ The M_{hh} distribution can help lift the "2nd minimum."

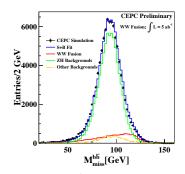

χ^2 vs. $\delta \kappa_{\lambda}$ for different scenarios

- ▶ The double-Higgs measurements still provide the best reach on $\delta \kappa_{\lambda}$.
- Other parameters are well constrained by single Higgs measurements.
- CLIC: The 2nd minimum can be lift by the M_{hh} distribution or combining with CEPC 240 GeV.


roduction Global fit in the EFT framework Results Conclusion

Impact of the single Higgs measurements

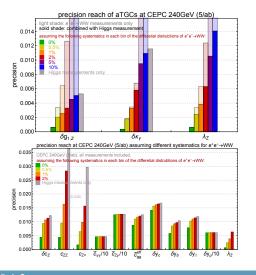



- What if the single Higgs measurements are much better or much worse?
- Much better: can further improve the bounds on $\delta \kappa_{\lambda}$ from double-Higgs measurements.
- Much worse: can significantly worsen the bounds on $\delta \kappa_{\lambda}$ from double-Higgs measurements.

Impact of the Higher energy runs

$e^+e^- ightarrow u ar{ u} h$

- It is hard to separate the *WW* fusion process from $e^+e^- \to hZ, Z \to \nu\bar{\nu}$ at 240 GeV.
- It is not consistent to focus on one process and treat the other one as SM-like!
- For CEPC/FCC-ee 240 GeV, we analyze the combined $e^+e^- \rightarrow \nu\bar{\nu}h$ process, assuming new physics can contribute to both processes.


Jiayin Gu

$e^+e^- o WW$

- $e^+e^- \to WW$ offers a great way to probe the anomalous triple gauge couplings (aTGCs, parameterized by $\delta g_{1,Z}$, $\delta \kappa_{\gamma}$, λ_{Z}).
- $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$ are related to Higgs observables.
- ► CEPC with $5\,\mathrm{ab^{-1}}$ data at 240 GeV can produce $\sim 9\times 10^7~e^+e^-\to WW$ events.
- With such large statistics, the aTGCs can be very well constrained ([1507.02238] Bian, Shu, Zhang), but with two potential issues:
 - Systematic uncertainties can be important!
 - ▶ If $e^+e^- \rightarrow WW$ is measured more precisely than the Z-pole measurements, is it still ok to assume the fermion gauge couplings are SM-like?

The interplay between Higgs and TGC

$$\delta g_{1,Z} , \ \delta \kappa_{\gamma} \leftrightarrow$$

$$c_{ZZ} , \ c_{Z\square} , \ c_{\gamma\gamma} , \ c_{Z\gamma}$$

- We try different assumptions on the systematic uncertainties (in each bin with the differential distribution divided into 20 bins).
- Detailed study of e⁺e⁻ → WW required to estimate the systematic uncertainties!

TGC at ILC 500 GeV

ILC								
	uncertainty correlation matrix							
		$\delta g_{1,Z}$ $\delta \kappa_{\gamma}$ λ_{Z}						
$\delta g_{1,Z}$	6.1×10^{-4}	1	0.634	0.477				
$\delta \kappa_{\gamma}$	6.4×10^{-4}		1	0.354				
λ_Z	7.2×10^{-4}			1				

- Linear colliders (large \sqrt{s} , beam polarizations) could potentially constrain the aTGCs very well.
- Estimated precisions of aTGCs from the $e^+e^- \to WW$ measurements at ILC assuming 500 fb⁻¹ data at 500 GeV and a beam polarization of $P(e^-,e^+)=(\pm 0.8,\pm 0.3)$. [I. Marchesini, PhD thesis, Hamburg U. (2011)]

Asymmetry observables

$$\mathcal{A}_{\theta_{1}} = \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_{1} \operatorname{sgn}(\cos(2\theta_{1})) \frac{d\sigma}{d\cos\theta_{1}},$$

$$\mathcal{A}_{\phi}^{(1)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin\phi) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(2)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin(2\phi)) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(3)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos\phi) \frac{d\sigma}{d\phi},$$

$$\mathcal{A}_{\phi}^{(4)} = \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos(2\phi)) \frac{d\sigma}{d\phi},$$

$$(1)$$

$$\mathcal{A}_{c\theta_1,c\theta_2} = \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_1 \operatorname{sgn}(\cos\theta_1) \int_{-1}^{1} d\cos\theta_2 \operatorname{sgn}(\cos\theta_2) \frac{d^2\sigma}{d\cos\theta_1 d\cos\theta_2}, \quad (2)$$

The "12-parameter" framework in the Higgs basis

The relevant terms in the EFT Lagrangian are

$$\mathcal{L} \supset \mathcal{L}_{hVV} + \mathcal{L}_{hff} + \mathcal{L}_{tgc} , \qquad (3)$$

the Higgs couplings with a pair of gauge bosons

$$\mathcal{L}_{hVV} = \frac{h}{v} \left[(1 + \delta c_W) \frac{g^2 v^2}{2} W_{\mu}^+ W_{\mu}^- + (1 + \delta c_Z) \frac{(g^2 + g'^2) v^2}{4} Z_{\mu} Z_{\mu} \right]$$

$$+ c_{WW} \frac{g^2}{2} W_{\mu\nu}^+ W_{\mu\nu}^- + c_{W\Box} g^2 (W_{\mu}^- \partial_{\nu} W_{\mu\nu}^+ + \text{h.c.})$$

$$+ c_{gg} \frac{g_S^2}{4} G_{\mu\nu}^3 G_{\mu\nu}^2 + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A_{\mu\nu} + c_{Z\gamma} \frac{e\sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} A_{\mu\nu}$$

$$+ c_{ZZ} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z_{\mu\nu} + c_{Z\Box} g^2 Z_{\mu} \partial_{\nu} Z_{\mu\nu} + c_{\gamma\Box} gg' Z_{\mu} \partial_{\nu} A_{\mu\nu} \right]. (4)$$

The "12-parameter" framework in the Higgs basis

 Not all the couplings are independent, for instance one could write the following couplings as

$$\begin{split} &\delta c_{W} = \delta c_{Z} + 4\delta m \,, \\ &c_{WW} = c_{ZZ} + 2s_{\theta_{W}}^{2} c_{Z\gamma} + s_{\theta_{W}}^{4} c_{\gamma\gamma} \,, \\ &c_{W\Box} = \frac{1}{g^{2} - g'^{2}} \left[g^{2} c_{Z\Box} + g'^{2} c_{ZZ} - e^{2} s_{\theta_{W}}^{2} c_{\gamma\gamma} - (g^{2} - g'^{2}) s_{\theta_{W}}^{2} c_{Z\gamma} \right] \,, \\ &c_{\gamma\Box} = \frac{1}{g^{2} - g'^{2}} \left[2g^{2} c_{Z\Box} + (g^{2} + g'^{2}) c_{ZZ} - e^{2} c_{\gamma\gamma} - (g^{2} - g'^{2}) c_{Z\gamma} \right] \,, \end{split}$$
 (5)

 we only consider the diagonal elements in the Yukawa matrices relevant for the measurements considered,

$$\mathcal{L}_{hff} = -\frac{h}{v} \sum_{f=t, c, b, \tau, \mu} m_f (1 + \delta y_f) \overline{f}_R f_L + \text{h.c.}.$$
 (6)

TGC

$$\mathcal{L}_{\text{tgc}} = igs_{\theta_{W}} A^{\mu} (W^{-\nu} W_{\mu\nu}^{+} - W^{+\nu} W_{\mu\nu}^{-})
+ ig(1 + \delta g_{1}^{Z}) c_{\theta_{W}} Z^{\mu} (W^{-\nu} W_{\mu\nu}^{+} - W^{+\nu} W_{\mu\nu}^{-})
+ ig \left[(1 + \delta \kappa_{Z}) c_{\theta_{W}} Z^{\mu\nu} + (1 + \delta \kappa_{\gamma}) s_{\theta_{W}} A^{\mu\nu} \right] W_{\mu}^{-} W_{\nu}^{+}
+ \frac{ig}{m_{W}^{2}} (\lambda_{Z} c_{\theta_{W}} Z^{\mu\nu} + \lambda_{\gamma} s_{\theta_{W}} A^{\mu\nu}) W_{\nu}^{-\rho} W_{\rho\mu}^{+},$$
(7)

- $V_{\mu\nu} \equiv \partial_{\mu} V_{\nu} \partial_{\nu} V_{\mu}$ for $V = W^{\pm}$, Z, A,. Imposing Gauge invariance one obtains $\delta \kappa_{Z} = \delta g_{1,Z} t_{\theta_{W}}^{2} \delta \kappa_{\gamma}$ and $\lambda_{Z} = \lambda_{\gamma}$.
- ▶ 3 aTGCs parameters $\delta g_{1,Z}$, $\delta \kappa_{\gamma}$ and λ_{Z} , 2 of them related to Higgs observables by

$$\delta g_{1,Z} = \frac{1}{2(g^2 - g'^2)} \left[-g^2(g^2 + g'^2)c_{Z\square} - g'^2(g^2 + g'^2)c_{ZZ} + e^2g'^2c_{\gamma\gamma} + g'^2(g^2 - g'^2)c_{Z\gamma} \right]$$

$$\delta \kappa_{\gamma} = -\frac{g^2}{2} \left(c_{\gamma\gamma} \frac{e^2}{g^2 + g'^2} + c_{Z\gamma} \frac{g^2 - g'^2}{g^2 + g'^2} - c_{ZZ} \right). \tag{8}$$

CEPC/FCC-ee Higgs rate measurements

		CE		FCC-ee				
	[240 Ge\	/, 5 ab ⁻¹]	[350 GeV, 200 fb ⁻¹]		[240 GeV, 10 ab ⁻¹]		[350 GeV, 2.6 ab ⁻¹]	
production	Zh	$ u \bar{\nu} h$	Zh	$ u \bar{\nu} h$	Zh	$ u \bar{\nu} h$	Zh	$ u \bar{\nu} h$
σ	0.50%	-	2.4%	-	0.40%	-	0.67%	-
		$\sigma \times$		$\sigma \times BR$				
$h o b ar{b}$	0.21%*	0.39%	2.0%	2.6%	0.20%	0.28%	0.54%	0.71%
$h ightarrow c ar{c}$	2.5%	-	15%	26%	1.2%	-	4.1%	7.1%
h o gg	1.2%	-	11%	17%	1.4%	-	3.1%	4.7%
h o au au	1.0%	-	5.3%	37%	0.7%	-	1.5%	10%
$h \rightarrow WW^*$	1.0%	-	10%	9.8%	0.9%	-	2.8%	2.7%
$h o ZZ^*$	4.3%	-	33%	33%	3.1%	-	9.2%	9.3%
$h o \gamma \gamma$	9.0%	-	51%	77%	3.0%	-	14%	21%
$h o \mu \mu$	12%	-	115%	275%	13%	-	32%	76%
$h o Z\gamma$	25%	-	144%	-	18%	-	40%	-

Table: For $e^+e^- \to \nu\bar{\nu}h$, the precisions marked with a diamond $^\diamondsuit$ are normalized to the cross section of the inclusive channel which includes both the WW fusion and $e^+e^- \to hZ, Z \to \nu\bar{\nu}$, while the unmarked ones include WW fusion only.

ILC Higgs rate measurements

ILC

	[250 GeV	/, 2 ab ⁻¹]	[350 Ge\	/, 200 fb ⁻¹]	[500	GeV, 4 ab	⁻¹]	[1 TeV,	1 ab ⁻¹]	[1 TeV, 2	2.5 ab ⁻¹]
production	Zh	νūh	Zh	νūh	Zh	$\nu \bar{\nu} h$	tth	νūh	tth	$\nu \bar{\nu} h$	tth
σ	0.71%	-	2.1%	-	1.1%	-	-	-	-	-	-
	$\sigma imes { m BR}$										
$h \rightarrow b\bar{b}$	0.42%	3.7%	1.7%	1.7%	0.64%	0.25%	9.9%	0.5%	6.0%	0.3%	3.8%
$h \rightarrow c\bar{c}$	2.9%	-	13%	17%	4.6%	2.2%	-	3.1%	-	2.0%	-
$h \rightarrow gg$	2.5%	-	9.4%	11%	3.9%	1.4%	-	2.3%	-	1.4%	-
$h \rightarrow \tau \tau$	1.1%	-	4.5%	24%	1.9%	3.2%	-	1.6%	-	1.0%	-
$h \rightarrow WW^*$	2.3%	-	8.7%	6.4%	3.3%	0.85%	-	3.1%	-	2.0%	-
$h \rightarrow ZZ^*$	6.7%	-	28%	22%	8.8%	2.9%	-	4.1%	-	2.6%	-
$h \rightarrow \gamma \gamma$	12%	-	44%	50%	12%	6.7%	-	8.5%	-	5.4%	-
$h o \mu \mu$	25%	-	98%	180%	31%	25%	-	31%	-	20%	-
$h \rightarrow Z\gamma$	34%	-	145%	-	49%	-	-	-	-	-	-

troduction Global fit in the EFT framework Results Conclusion

CLIC Higgs rate measurements

CLIC

	[350 GeV	$^{\prime}$, 500 fb ⁻¹]	[1.4 TeV	', 1.5 ab ⁻¹]	[3 TeV, 2 ab ⁻¹]					
production	Zh	$ u \bar{\nu} h$	νūh	tīth	$ u \bar{\nu} h$					
σ	1.6%	-	-	-	-					
	$\sigma imes \mathrm{BR}$									
$h o b ar{b}$	0.84%	1.9%	0.4%	8.4%	0.3%					
$h \rightarrow c\bar{c}$	10.3%	14.3%	6.1%	-	6.9%					
h o gg	4.5%	5.7%	5.0%	-	4.3%					
h o au au	6.2%	-	4.2%	-	4.4%					
$h \rightarrow WW^*$	5.1%	-	1.0%	-	0.7%					
$h \rightarrow ZZ^*$	-	-	5.6%	-	3.9%					
$h \rightarrow \gamma \gamma$	-	-	15%	-	10%					
$h \rightarrow \mu\mu$	-	-	38%	-	25%					
$h o Z\gamma$	-	-	42%	-	30%					

Table: We also include the estimations for $\sigma(hZ) \times \mathrm{BR}(h \to b\bar{b})$ at high energies in [arXiv:1701.04804] (Ellis et al.), which are 3.3% (6.8%) at 1.4 TeV (3 TeV). For simplicity, the measurements of ZZ fusion $(e^+e^- \to e^+e^-h)$ are not included in our analysis.