Measurement Inputs in the EFT study

Jiayin Gu

DESY & IHEP

Higgs physics toward CDR Meeting August 30, 2017

DESY & IHEP

based on [arXiv:1704.02333] G. Durieux, C. Grojean, JG, K. Wang

Jiayin Gu

Higgs rate measurements

	CEPC 240 GeV, 5 ab ⁻¹			
production	$e^+e^- \rightarrow hZ$	$e^+e^- \rightarrow \nu \bar{\nu} h$		
σ	0.50%	-		
	$\sigma \times BR$			
$h ightarrow bar{b}$	0.21%*	0.39%◇		
h ightarrow c ar c	2.5%	-		
h ightarrow gg	1.2%	-		
h ightarrow au au	1.0%	-		
$h \rightarrow WW^*$	1.0%	1.0% -		
$h \rightarrow ZZ^*$	4.3%	-		
$h \rightarrow \gamma \gamma$	9.0%	-		
$h ightarrow \mu \mu$	12%	-		
$h \rightarrow Z \gamma$	25%	-		

- $\sigma(hZ), \sigma(hZ) \times BR$ and $\sigma(\nu \bar{\nu} h) \times BR$
- Would be good to have the correlations among $\sigma(hZ) \times BR(h \rightarrow b\bar{b}/c\bar{c}/gg)$, if they are significant. (currently assumed to be zero in our study)
- ▶ Be careful on the $\nu \bar{\nu} h$ measurement! ([◊] and ***** explained in the next two pages)

 $e^+e^-
ightarrow
u ar{
u} h$

- ▶ It is hard to separate the *WW* fusion process from $e^+e^- \rightarrow hZ, Z \rightarrow \nu\bar{\nu}$ at 240 GeV.
- It is not consistent to focus on one process and treat the other one as SM-like!
- ► For CEPC/FCC-ee 240 GeV, we analyze the combined $e^+e^- \rightarrow \nu \bar{\nu} h$ process, assuming new physics can contribute to both processes.

Higgs rate measurements

	CEPC 240 GeV, 5 ab ⁻¹			
production	$e^+e^- \rightarrow hZ$	$e^+e^- \rightarrow \nu \bar{\nu} h$		
σ	0.50%	-		
	$\sigma \times BR$			
$h ightarrow bar{b}$	0.21%*	0.39%		
h ightarrow c ar c	2.5%	-		
h ightarrow gg	1.2%	-		
h ightarrow au au	1.0%	-		
$h \rightarrow WW^*$	1.0% -			
$h \rightarrow ZZ^*$	4.3%	-		
$h \rightarrow \gamma \gamma$	9.0%	-		
$h ightarrow \mu \mu$	12% -			
$h ightarrow Z \gamma$	25%	-		

▶ [◊]: The precision is normalized to the total cross section including both *WW* fusion and $e^+e^- \rightarrow hZ, Z \rightarrow \nu\bar{\nu}$.

$$\frac{\Delta\sigma_{\text{tot}}}{\sigma_{\text{tot}}^{\text{SM}}} = \frac{2.8\% \times \sigma_{WW \to H}^{\text{SM}}}{\sigma_{WW \to H}^{\text{SM}} + \sigma_{\text{inv}Z}^{\text{SM}}} \approx 0.39\%, \qquad (1)$$

★: The precision of σ(hZ) × BR(h → bb̄) reduces to 0.24% if one excludes the contribution from e⁺e⁻ → hZ, Z → νν̄, h → bb̄ to avoid double counting.

angular observables in $e^+e^- \rightarrow hZ$

- ▶ We focus on the channel $e^+e^- \rightarrow hZ$, $Z \rightarrow \ell^+\ell^-$, $h \rightarrow b\bar{b}$.
 - The angular observables we have do not rely on the Higgs decay product.
 - We use the $b\bar{b}$ channel because it has less background.
- Good resolution, very small background ⇒ statistical uncertainty dominates ⇒ the most important input is the efficiency!
- > A preliminary version of the preCDR suggest the efficiency is about \sim 50-60%.
 - We fix it to 60% for simplicity.

- Include additional Higgs decay channel
 - May need to worry about background and combinatorial problems.
- Include hadronic decays of Z
 - EFT calculation not available (but it won't be hard to do).
 - May need to worry about jet resolution, and also hard to discriminate q and \bar{q} .
- Extending the hZ angular observable analysis may not be our top priority. (but who knows?)

ILC 500 GeV						
	uncertainty	correlation matrix				
		δg _{1,Z}	$\delta \kappa \gamma$	λ_Z		
$\delta g_{1,Z}$	6.1×10^{-4}	1	0.634	0.477		
δκη	6.4×10^{-4}		1	0.354		
λ_Z	7.2×10^{-4}			1		

- Important, and also difficult.
- Ideally, it would be best if the constraints on the aTGCs can be directly provided by experimentalists.
 - ▶ ILC study: I. Marchesini, PhD thesis, Hamburg U. (2011), assuming 500 fb⁻¹ data at 500 GeV with $P(e^-, e^+) = (\pm 0.8, \pm 0.3)$.
- Other people are also doing it.
 - ILC may release an updated document on TGC analysis soon (and there will also be some results for the 250 GeV run obtained by scaling).
 - CLIC's TGC analysis may also come out soon.

What we did (which wasn't good enough)

- We follow a previous TGC study for CEPC by theorists.
 ([arXiv:1507.02238] Bian, Shu, Zhang)
- Some optimistic assumptions are made.
 - 100% cut efficiency. Backgrounds are ignored.
 - All channels are used. Optimistic assumptions are made for the event reconstruction.
 - All the angular distributions are used (1 production angle, 2 decay angles for each W). The correlation among them are ignored.
- Different from [arXiv:1507.02238], we added by hand a fixed 1% in each bin (while the distribution in each angle is divided into 20 bins).
 - Probably too conservative!

CEPC 250 GeV (5/ab), our estimations						
	uncertainty	correlation matrix				
		δg1,Z	$\delta \kappa_{\gamma}$	λ_Z		
$\delta g_{1,Z}$	0.0064	1	0.068	-0.93		
$\delta \kappa_{\gamma}$	0.0035		1	-0.40		
λ_{Z}	0.0063			1		

$e^+e^- ightarrow WW$ (TGC measurements)

- Maybe we should focus on the semi-leptonic channel?
- The angular distributions are important!
- Would it be possible for experimentalist to provide the uncertainties for the binned distribution of the production polar angle? (An example from LEP is shown on the top right.)
- It would be better to also include the decay angles.

The interplay between Higgs and TGC

- $\delta g_{1,Z} , \ \delta \kappa_{\gamma} \leftrightarrow \\ C_{ZZ} , \ C_{Z\Box} , \ C_{\gamma\gamma} , \ C_{Z\gamma}$
- We try different assumptions on the systematic uncertainties (in each bin with the differential distribution divided into 20 bins).
- Detailed study of e⁺e[−] → WW required to estimate the systematic uncertainties!

Jiayin Gu

The importance of combining all measurements

- The results are much worse if we only include the rates of Higgs measurements alone!
- There is some overlap in the information from different measurements.
- Measurements at different energies can be very helpful.