CEPC draft meeting — 2017.10.16 H>ZZ* decay

Zhuoni Qian

Updates

- A. FCC-ee analysis and ILC analysis on h>ZZ*?
- B. Analysis detail for H>ZZ*
- C. For correlative signal fit:
- 1. (VBF) ee>vvh contributes ~14% vvh signal?
- 2. Z[vv]H[mumujj]: 10%~20% background is Z[jj]H[WW*>evev]
- 3. Z[mumu]H[vvjj] : >~90% background are ZH[bb/WW*]

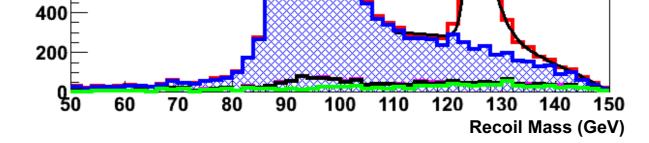


Figure 9. Distribution of the mass recoiling against the lepton pair in the $e^+e^- \rightarrow HZ$ channel, in the $Z \rightarrow \ell^+\ell^-$ final state ($\ell = e, \mu$), taken from ref. [36], for an integrated luminosity equivalent to one year of data taking with one TLEP detector (assumed to be the CMS detector). The number of Higgs boson events (the red histogram) obtained from a fit of this distribution is proportional to the inclusive HZ cross section, σ_{HZ} .

to this distribution of the signal and background contributions allows the total $e^+e^- \rightarrow HZ$ cross section to be measured with a precision of 0.4% at TLEP. As pointed out in ref. [41], the measurement of the total $e^+e^- \rightarrow HZ$ cross section is a sensitive probe of possible new physics that can reduce the fine-tuning of the Higgs boson mass. Such new physics would also renormalize the Higgs couplings by a universal factor, and the TLEP measurement of the $e^+e^- \rightarrow HZ$ cross section of 0.4% would be sensitive to new particles that could not be meaningfully probed in any other way.

A summary of the statistical precision of the measurements presented in ref. [36] for $\sqrt{s} = 240 \,\text{GeV}$ — extrapolated to the TLEP luminosity and to four detectors — is given in table 4. In this table, a few numbers are added with respect to ref. [36]. First, the precision for $\sigma_{\text{HZ}} \times \text{BR}(\text{H} \rightarrow \text{c}\bar{\text{c}})$ and $\sigma_{\text{HZ}} \times \text{BR}(\text{H} \rightarrow \text{gg})$ is extrapolated from the ILC prediction, as would be obtained if the CMS detector were upgraded with a vertex detection device with adequate c-tagging performance. Secondly, the precision for $\sigma_{\text{HZ}} \times \text{BR}(\text{H} \rightarrow \text{ZZ})$ is obtained from an almost background-free dedicated search for ZZZ final states including four leptons, recently developed for that purpose.

The latter measurement has an important consequence for the determination of the total Higgs decay width. In e⁺e⁻ collisions, it is not possible to directly observe the width of the Higgs boson if it is as small as the Standard Model prediction of 4 MeV. However, the total width of the Higgs boson is given by $\Gamma_{tot} = \Gamma(H \rightarrow ZZ)/BR(H \rightarrow ZZ)$. As the partial decay width $\Gamma(H \rightarrow ZZ)$ is directly proportional to the inclusive cross section σ_{HZ} , Γ_{tot} can be measured with the same precision as the ratio $\sigma_{HZ}^2/\sigma_{HZ} \times BR(H \rightarrow ZZ)$. Therefore,

FCC-ee study

ILC-TDR-201306

0

Figure 2.11. Distribution of the angle ϕ between two decay planes of W and W^* from the decay $H \to WW^* \to 4j$ with the inclusion of anomalous couplings [97]. (a) The SM curve along with that for a = 1, $b = \tilde{b} = 0$, $\Lambda = 1$ TeV; the position of the minimum is the same for both distributions. (b) The SM result with the cases $\tilde{b} = \pm 5$, a = b = 0, $\Lambda = 1$ TeV; the position of the minimum is now shifted as discussed in the text. From [97].

6

the absolute partial width $\Gamma(ZZ)$. However, to use this value to normalize the other Higgs partial widths in a completely model-independent analysis, we would need to use the formula similar to (2.34)

$$\Gamma(A) = \Gamma(ZZ) \cdot \frac{BR(A)}{BR(ZZ)},$$
(2.35)

6

and so we again need to measure the branching ratio for $h \to ZZ^*$. This is not easy to do at the ILC because it is a rare mode giving low statistics for a Higgs boson with $m_h \simeq 120$ GeV. No full simulation study of the $h \to ZZ^*$ branching ratio in $e^+e^- \to Zh$ is currently available. We will therefore use the result of the $h \to WW^*$ study [85] and scale accordingly. The error for the $h \to WW^*$ decay implies a 26% relative error for the $h \to ZZ^*$ branching ratio. The use of the formula (2.35) then implies that the uncertainties in absolute partial widths or Higgs couplings are those listed convolved with $2.5 \oplus 26\%$. This significantly degrades the precision information obtained at the ILC.

An alternative is to use the theoretical assumption

$$g(hWW)/g(hZZ) = \cos^2 \theta_W \tag{2.36}$$

to tie together the hZZ and hWW couplings. Now $BR(WW^*)$ can be used in the denominator of Eq.(2.35). The error added in converting from branching ratios to partial widths is $2.5 \oplus 8.6\% = 9.0\%$.

A better way is to use the WW fusion process, $e^+e^- \rightarrow \nu\overline{\nu}h$. The cross section for this process is proportional to $g^2(hWW)$ and thus to the $h \rightarrow WW^*$ partial width [95]. Although the WWfusion cross section is small at $\sqrt{s} = 250 \text{ GeV}$, 18 fb for $m_h = 120 \text{ GeV}$ and the standard left-hand beam combination, $(P_{e^-}, P_{e^+}) = (-0.8, +0.3)$, the expected yield exceeds 4k events and allows the measurement of the WW fusion cross section to $\Delta\sigma(WW)/\sigma(WW) = 7.2\%$ for the 250 fb^{-1} . Combining the $BR(WW^*)$ measurement, this implies that the total width can be determined to 11% in a completely model independent way from 250 GeV data alone [96]. As we will see below

Charaili-0925 Table (now 43)

Observed=tagged signal after cutflow and in fit range. All events are weighted and normalized to 5ab⁻¹.

				-			-	-	
Signal		Observed	Who takes	Lest undete	Sig	Signal		Who takes	Loot undete
Z	н	Events	charge Last update		Z	н	Events	charge	Last update
H->Inclusive					vvH(WW fusion)				
VV	Inclusive	164170			vv	bb	10256	LiangHao	2017.9
μμ	Inclusive	29552	Libo	2017.8			H->WW		
ee	Inclusive	22200				μνμν	52		
		H->qq				evev	36	Libo	2017.4
	bb	7655	-	2017.7	μμ	evμv	105		
ee	сс	351				evqq	663		
	gg	1058				μνqq	717		
	bb	11108	Baiyu	2017.9	ee	μνμν	44		
μμ	сс	567				evev	22		
	gg	1762				evμv	81		
qq	bb	176542		2017.7		evqq	612		
	сс	8272				μνqq	684		
	gg	25293			vv	qqqq	9022		
	bb	70608					H->77		
vv	сс	3061			vv	μμϳϳ	190	Yuqian	2016.9
	gg	9633			μμ	vvjj	200		
	_	Η→γγ,Ζγ			ee	vvjj	69		
II		93	Fong	2015			Н→Ш		
VV	γγ	γγ 309	Feng	2015	μμ	π	2068	Dan	2017.9
qq		822	Yitian	2017.4	qq		36023		
qq	Zγ	219	Weimin	2017.9	vv		12456		
H->Invisible					qq	qq 71			
qq		202			ee	μμ	1	Zhenwei	2017.8
ee	vvvv	8	MoXin	2017.7	μμ		4		
μμ		18		vv		14			

Questions on H>ZZ*:

- (Pre)selection cuts, BDT, TMVA? (Need description)
- Signal: Full simulation; Background: Fast simulation (ZH bkg)
- Kaili's fit (based on YQ's 2016.09 update):

z->vv, h->mmjj is +7.53%,-7.19% z->mm, h->vvjj is +10.5%, -10.1%. z->ee, h->vvjj is +34.9%, -33.8%.

Kaili-0925 $\Delta(Br * \sigma)$ fit Result

	PreCDR	Current
$\sigma(ZH)$	0.51%	0.50%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	{+0.27% -0.27%
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	$\{^{+3.45\%}_{-3.43\%}$
$\sigma(ZH) * Br(H \rightarrow gg)$	1.6%	$\{^{+1.43\%}_{-1.42\%}$
$\sigma(ZH) * Br(H \rightarrow WW)$	1.5%	{+1.20% -1.20%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.3%	$\{^{+5.91\%}_{-5.74\%}$
$\sigma(ZH) * Br(H \rightarrow \tau\tau)$	1.2%	{+0.68% -0.67%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	9.0%	{+8.26% -8.17%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	$\{^{+15.8\%}_{-14.9\%}$
$\sigma(vvH) * Br(H \rightarrow bb)$	2.8%	$\{^{+3.12\%}_{-3.11\%}$
$Br(H \rightarrow inv.)$	0.28%	0.18%
$\sigma(ZH) * Br(H \to Z\gamma)$	\	$4\sigma(\{^{+15.4\%}_{-14.9\%})$

In general, fit result is consistent with results of Pre_CDR and Individual studies.

2017/9/25

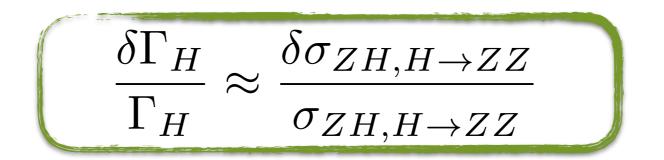
CEPC-Current

Separate sensitivities on Zh and vvH production channel?

Table 13. Estimated precision of Higgs boson property measurements at the CEPC. All the numbers refer to relative precision except for m_H and $BR(H \rightarrow inv)$ for which Δm_H and 95% CL upper limit are quoted respectively.

Δm_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\bar{\nu}H) \times \mathrm{BR}(H \to b\bar{b})$
5.9 MeV	2.8%	0.50%	3.12%
Decay mode		$\sigma(ZH) \times BR$	BR
$H \to b\bar{b}$		0.27%	0.57%
$H \to c \bar{c}$		3.5%	3.5%
$H \to gg$		1.4%	1.5%
$H \to \tau^+ \tau^-$		0.68%	0.84%
$H \to WW^*$		1.2%	1.3%
$H \to ZZ^*$		5.9%	5.9%
$H \to \gamma \gamma$		8.2%	8.2%
$H \to \mu^+ \mu^-$		15%	15%
$H \to \mathrm{inv}$		_	0.18%

Then fit the 2(prod)*9(decay) channels simultaneously?



Section 6.2 Total Width

$$\sigma^{inc}_{ZH}\sim g_Z^2$$

$$\sigma_{ZH,H\to ZZ} \sim \frac{g_Z^2 g_Z^2}{\Gamma_H}$$

$$\Gamma_H \sim \frac{\sigma_{ZH}^{inc}}{\sigma_{ZH,H\to ZZ}}$$

Summary

- A. Lacking FCC-ee analysis and ILC analysis on h>ZZ*
- B. **Need** Analysis description for H>ZZ* channels (cuts, BDT?)
- C. For correlative signal fit (Step C depends on B!):
- 1. (VBF) ee>vvh contributes ~14% vvh signal? => (vvH[ZZ*>mmqq,qqmm])
- 2. Z[vv]H[mmjj]: 10%~20% background => Z[jj]H[WW*]
- 3. Z[mm]H[vvjj]: ~80% background => $Z[jj]H[WW^*]$

Current state

SM background : fastsimulation

μμννqq12811863.3h->ww&zz_sl12.9Need a tau finder to increase the accuracyμμqqvv128125-h->bb&zz_sl>25accuracyeevvqq1329153.8h->ww&sze_sl15.8reconstructedeeqqvv13288-h->bb&zz_sl>25efficiency of electron need to bevvqqµµ15212161.4h->t,w&zz_sl11.0improvedvvqqµµ15212351.9h->w,b&zz_sl12.9vveqq15111843.1h->w&sze_sl21.3vvqqce151134-h->tk&zz_sl>25comparing to leptons&higgsqqµµvv135115-h->tw&zz_sl>25comparing to leptons&higgsqqvvµµ135122-h->tw&zz_sl>25comparing to leptons&higgsqqvvµµ135123-h->tw&zz_sl>25comparing to leptons&higgsqqvvµµ135122-h->tw&zz_sl>25comparing to leptons&higgsqqvvµµ135123-h->tw&zz_sl>25comparing to leptons&higgsqqvvµµ135123-h->tw&zz_sl>25comparing to leptons&higgsqqvvµµ135122-h->tw&zz_sl>25comparing to leptons&higgsqqvvµµ135123-h->tw&zz_sl>25comparing to leptons&higgsqqeevv127107-h->tw&z	ZZZ*	Yield	Object reconstructed	Signal Efficiency(%)	Main Background	Accuracy	Comments
$\mu\mu qqvv$ 128125-h->b&zz_sl>25accuracyeevvqq1329153.8h->ww&sze_sl15.8reconstructedeeqqvv13288-h->bb&zz_sl>25efficiency ofvvqqq15212161.4h->t,w&zz_sl11.0improvedvvqqµµ15212351.9h->wb&sze_sl21.3vvqqee15111843.1h->w&sze_sl21.3vvqqee151134-h->tk&zz_sl>25qqµµvv135115-h->tk&zz_sl>25qqvvµµ135122-h->tk&zz_sl>25qqeevv127107-h->tk&sze_sl>25qqvvee127123-h->tk&sze_sl>25µµµµqq/qqµµ433969.8h->tk&zz_sl19.9µµeeqq/qee4333-h->tk&sze_sl>25eeeeqq/eeqqee433960.5h->tt&zz_sl21.2eeeeqq/eeqqee433960.5h->tt&sze_sl>25eeeeqq/eeqqee433960.5h->tt&sze_sl>25eeeeqq/eeqqee4333-h->tt&sze_sl>25eeeeqq/eeqqee433960.5h->tt&sze_sl>25eeeeqq/eeqqee4334-h->tt&sze_sl>25eeeeqq/eeqqee433960.5h->tt&sze_sl>25eeeeqq/eeqqee433960.5h->tt&s	μμννqq	128			h->ww&zz_sl		
reconstructedeeqqvv13288-h->bb&zz_sl>25efficiency of electron need to be olectron need to bevvqqµµ15212161.4h->t,w&zz_sl11.0improvedvveqq15111843.1h->wb&zz_sl12.9vvqqee15111843.1h->wbsze_sl21.3vvqqee15111843.1h->tkzz_sl>25qqµµvv135115-h->ttkzz_sl>25qqvvµµ135115-h->ttkzz_sl>25qqeevv127107-h->ttksze_sl>25qqvvee127107-h->ttksze_sl>25µµµµqq/qqµµ433969.8h->tt&zz_sl19.9µµeeqq/qee4333-h->tt&sze_sl21.2eeeeqq/eeqqee4333-h->tt&sze_sl225eeeqq/eeqqee433960.5h->tt&sze_sl225eeeqq/eeqqee433960.5h->tt&sze_sl21.2eeeqq/eeqqee4333-h->tt&sze_sl225eeeqq/eeqqee4333-h->tt&sze_sl225eeeqq/eeqqee433960.5h->tt&sze_sl225eeeqq/eeqqee433960.5h->tt&sze_sl225eeeqq/eeqqee4341F8.2h<>tt&sze_sl21.2eeeqq/eeqee4341F8.2h<>tt&sze_sl225 <td>μμqqvv</td> <td>128</td> <td>125</td> <td>-</td> <td>h->bb&zz_sl</td> <td>>25</td> <td></td>	μμqqvv	128	125	-	h->bb&zz_sl	>25	
ννμμqq 152 121 61.4 h > twkzz_sl 11.0 electron need to be improved ννqqμμ 152 123 51.9 h->w,b&zz_sl 11.0 improved vveeqq 151 118 43.1 h->w,b&zz_sl 12.9 vveeqq 151 118 43.1 h->w&sze_sl 21.3 vvqqee 151 134 - h->bb&sze_sl >25 Comparing to leptons&higgs qqµµvv 135 115 - h->tt&zz_sl >25 Comparing to leptons&higgs qqvvµµ 135 122 - h->tt&zz_sl >25 chanel,q recoil mass couldn't offer enough qqvve 127 107 - h->twszz_sl >25 enough ψµµµqq/qqµµ 43 39 69.8 h->tt&zz_sl 90 Need a tau finder to increase the accuracy ψµµeeqq/qqee 43 39 60.5 h->tt&zz_sl 21.2 accuracy eeceqq/eeqee 43 33 - h->tt&sz_sl 22	eevvqq	132	91	53.8	h->ww&sze_sl	15.8	
ννqqμμ 152 123 51.9 h->w,b&zz_sl 12.9 vveeqq 151 118 43.1 h->w&sze_sl 21.3 vvqqee 151 134 - h->bb&sze_sl >25 qqµµvv 135 115 - h->tk&zz_sl >25 qqµvvµµ 135 112 - h->tk&zz_sl >25 qqvvµµ 135 122 - h->twszz_sl >25 channel,qq recoil mass couldh't offer enough distinguishing power to SM qqeevv 127 107 - h->tt&zz_sl >25 power to SM µµµµqq/qqµµ 43 39 69.8 h->tt&zz_sl 19.9 Need a tau finder to increase the accuracy µµµµeqq/qqee 43 33 - h->tt&zz_sl 21.2 reconstructed efficiency of	eeqqvv	132	88	-	h->bb&zz_sl	>25	
vveeqq15111843.1h->w&sze_sl21.3vvqee151134-h->bb&sze_sl>25qqµµvv135115-h->tt&zz_sl>25qqvvµµ135122-h->t,w&zz_sl>25qqeevv127107-h->tt&sze_sl>25qqvvee127107-h->t,w&sze_sl>25qqvvee127123-h->t,w&sze_sl>25µµµµqq/qqµµ433969.8h->tt&zz_sl19.9µµeeqq/qee4333-h->tt&sze_sl>25eeeeeq/eeqee4333-h->tt&sze_sl>25eeeeqq/eeqee4334-h->tt&sze_sl>25eeeeqq/eeqee4334-h->tt&sze_sl21.2eeeeqf/eeqee4334-h->tt&sze_sl>25eeeeqf/eeqee4334-h->tt&sze_sl>25eeeeqf/eeqee4334-h->tt&sze_sl>25eeeeqf/eeqee4334-h->tt&sze_sl>25eeeeqf/eeqee434158.2h->tt&sze_sl>25efficiency of4158.2hho	ννμμqq	152	121	61.4	h->t,w&zz_sl	11.0	improved
vvqqee 151 134 - h->bb&sze_sl >25 qqμµvv 135 115 - h->tt&zz_sl >25 Comparing to leptons&higgs qqvvµµ 135 122 - h->tt&zz_sl >25 channel,qq recoil mass couldn't offer enough qqeevv 127 107 - h->tt&sze_sl >25 enough distinguishing power to SM qqvvee 127 123 - h->tt&zz_sl 19.9 Need a tau finder to increase the accuracy µµµµqq/qqµµ 43 39 60.5 h->tt&zz_sl 21.2 accuracy eeeeeqq/eeqee 43 33 - h->tt&sze_sl >25 reconstructed efficiency of	vvqqµµ	152	123	51.9	h->w,b&zz_sl	12.9	
$qq\mu\mu\nu\nu$ 135115-h->tt&zz_sl>25Comparing to leptons&higgs $qq\nu\nu\mu$ 135122-h->t,w&zz_sl>25channel,qq recoil mass couldn't offer enough $qqeev\nu$ 127107-h->tt&sze_sl>25channel,qq recoil mass couldn't offer enough $qqvvee$ 127107-h->tt&sze_sl>25power to SM $qqvvee$ 127123-h->tt&zz_sl>25power to SM $\mu\mu\mu\muqq/qq\mu\mu$ 433969.8h->tt&zz_sl19.9Need a tau finder to increase the accuracy $eeeeqq/eeqee$ 4333-h->tt&sze_sl>25reconstructed efficiency of	vveeqq	151	118	43.1	h->w&sze_sl	21.3	
$qqvv\mu\mu$ 135122-h->t,w&zz_sl>25channel,qq recoil< mass couldn't offer enoughqqeevv127107-h->tt&sze_sl>25distinguishing power to SMqqvvee127123-h->t,w&sze_sl>25distinguishing power to SM $\mu\mu\mu\muqq/qq\mu\mu$ 433969.8h->tt&zz_sl19.9Need a tau finder to increase the accuracyeeeeqq/eeqee4333-h->tt&sze_sl>25reconstructed efficiency of	vvqqee	151	134	-	h->bb&sze_sl	>25	
qqvvµµ135122-h->t,w&zz_sl>25channel,qq recoil mass couldn't offer enough distinguishing power to SMqqeevv127107-h->tt&sze_sl>25enough distinguishing power to SMqqvvee127123-h->t,w&sze_sl>25enough distinguishing power to SMµµµµqq/qqµµ433969.8h->tt&zz_sl19.9Need a tau finder to increase the accuracyµµeeqq/qqee433960.5h->tt&zz_sl21.2econstructed efficiency ofeeeeqq/eeqqee4333-h->tt&sze_sl>25reconstructed efficiency of	qqμμνν	135	115	-	h->tt&zz_sl	>25	1 0
qqeevv127107-h->tt&sze_sl>25enough distinguishing power to SMqqvvee127123-h->t,w&sze_sl>25gower to SM $\mu\mu\mu\muqq/qq\mu\mu$ 433969.8h->tt&zz_sl19.9Need a tau finder to increase the accuracy $\mu\mueeqq/qee$ 433960.5h->tt&zz_sl21.2accuracyeeeeqq/eeqqee4333-h->tt&sze_sl>25reconstructed efficiency of	qqvvμμ	135	122	-	h->t,w&zz_sl	>25	channel,qq recoil
qqvvee127123-h->t,w&sze_sl>25power to SM $\mu\mu\mu\muqq/qq\mu\mu$ 433969.8h->tt&zz_sl19.9Need a tau finder to increase the accuracy $\mu\mueeqq/qee$ 433960.5h->tt&zz_sl21.2accuracyeeeeqq/eeqqee4333-h->tt&sze_sl>25reconstructed efficiency of	qqeevv	127	107	-	h->tt&sze_sl	>25	enough
μμeeqq/qee433960.5h->tt&zz_sl21.2increase the accuracyeeeeqq/eeqqee4333-h->tt&sze_sl>25reconstructed efficiency of	qqvvee	127	123	-	h->t,w&sze_sl	>25	0 0
$\mu\mu eeqq/qee$ 433960.5h->tt&zz_sl21.2accuracyeeeeqq/eeqqee4333-h->tt&sze_sl>25reconstructed efficiency ofoouwgg/oogguw434158.2h >tt&sze_sl10.0	μμμμαα/αάμμ	43	39	69.8	h->tt&zz_sl	19.9	
efficiency of	µµeeqq/qqee	43	39	60.5	h->tt&zz_sl	21.2	
	eeeeqq/eeqqee	43	33	-	h->tt&sze_sl	>25	
	eeµµqq/eeqqµµ	43	41	58.2	h->tt&sze_sl	19.9	-