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Introduction

- Quantitive description of nature required detailed understanding of QCD
- Strong coupling constant as is the most important parameter in QCD

- It’s not a physical observable of the theory. It is defined in the context of
perturbation theory

Measurement * O(as) = 09 (a,) + a, O () + . .. * _
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Why s ?

as ~ 0.1 at Z pole: slow convergent

ggF | W/Z+jets | H+jets | ttbar perturbation series

O(as?) O(as) O(as?) |O(as?) - Many important processes start at

O(asz)
ds is a major source of Channel My|GeV] Ao Amy, Am,
uncertainties for Higgs H—-bb 126 +04% =+ 0.8%
production and decay H-cc 126 + 3.9 % + 2.3 %
[Mihaila, 1512.05194] 5 .. 126 YRE

Process Cross section(pb) Scale(%) PDF +as dag(%)

eoH 49.87 261 +0.32 -62 +74 +3.7
VBF 4.15 0.4 +0.8 +25 +0.7
WH 1.474 0.6 +0.3 + 3.8 +0.9
ZH 0.863 1.8 + 2.7 + 3.7 +0.9

ttH 0.611 -93  +5.9 + 8.9 + 3.0




Status of as

Current world average (PDG 16): (/g (M%) = 0.1181 = O.OOll(N 1%)

Compared with other fundamental constant:
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as is the least determined fundamental interaction constant in nature!

0.124 —

0.122

0.120

0.118

0.116

0.114

0.112

as ACCURACY (PDG)

X X

RERES

- ¥0.5%

T T T

i'l%%

Surprising lack of progress

S. Forte, Lattice 2017



Determination of as
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os from hadronic Z decay

EWK global fit 0.1196 + 0.0030
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as through precision measurement of: R? —

['(Z — hadrons)
['(Z — leptons)

R} =

= R2"V N.(1+ 6qcp + Om + dup)

mg A
7 (V) 7 (@)

LEP (Gfitter)  as(M2) = 0.11196 &= 0.0028xp :_

Inclusive, theoretically clean observable. Non-perturbative effects strongly suppressed

Uncertainties dominated by experiment
N3LO QCD known. All theoretical input known to a precision better than exp.

CEPC super Z facto
1011 Zp bOSOhry A(Ozs)exp < 0.5% At this level of accuracy,
detailed analysis of

A factor of 70 reduction in A (045 )th < systematics needed

statistical uncertainties




os from hadronic T decay

['(t~ — v, + hadrons)
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- Absolute error on as shrink by an order Davie _ 'Tb_," ]
of magnitude when evolve to Mz Boito o ="
SM review Lo
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- Experimental uncertainties negligible

- Small non-perturbative corrections, .
consistent with experimental data
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Main theory uncertainties (~2%) from
Fixed Order Perturbation Theory v.s.
Contour Improved Perturbation Theory
(resumming log of (s/m-2))

Need N4LO calculation to clarify



as from e+e- jet rates

- event rates: fraction of events having n

jets (directly sensitive to as)
- No analytic understanding of N.P.

corrections. However, parton level MC

agrees well with parton shower,

indicating N.P. estimate from MC reliable

« Current uncertainties dominated by
perturbative scale uncertainties
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Banfi, McAslan, Monni, Zanderighi, 2016

Banfi, 1512.05194

2-jet JADE [13] 1

2-jet ALEPH [12] -

2-jet OPAL [14] 1

3-jet JADE [17] 1

3-jet ALEPH [16] -

4-jet DELPHI [19] -

4-jet OPAL [20] 1

4-jet JADE [21] 1

5-jet ALEPH [9] -
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ag(mz)

Recent development in semi-analytic
tools make NNLL possible for dijet rate
resummation

significant reduction of scale
uncertainties

Future:

« NNLO for 2 4 jets production and
resummation

- analytic understanding of N.P. effects
8



os from e+e- event shape I
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as(mz) determination from event shape fits
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Largest theory uncertainties from
the treatment of N.P. corrections

Two different approach
« Estimate N.P. effects from MC

- mismatch between parton
level MC and shower

- Analytic parameterization,
simultaneous fit of as and N.P.
parameter 9



NSLL +

os from e+e- event shape: Il

Current best determination from SCET

NNLO [Hoang, et al]

Comments (Salam, 2016 KITP)

+ central value too small (4 o apart from | o, (M2) = 0.1123 £ 0.0015 ( 1.3% ) C Para.

Lattice)

- Analytic N.P. modeling valid far a way

as(M2) =0.1135 £ 0.0010 (0.9% ) T

Thrust and C parameter are correlated

from 3-jet region, but not too deep into

2-jet region. Not clear how much of
LEP data satisfy this requirement
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Prospects for CEPC

Provide crucial independent data to understand
whether small as is possible

Increase of Q2 help reduce N.P. effects

large Q? separate 3-jet and 2-jet region, increase
the valid region of analytic N.P. modeling

H->gg allows study of gluon event shape for the
first time

Theory progress also expected:
Resummation of Next-to-Leading Power Logs

Events shape with A?/Q? N.P. effects? (e.g., pT
like event shape) 10



Alternative observables ?

- From discovery tool to precision tool
- e.g. Soft drop in light jet mass/top mass

reconstruction

* Precision calculation helps asses the
robustness + understand the systematics

- Small N.P. effects on the peak, in contrast to

thrust or C parameter
- analytic understanding?

* Further detailed study required
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Event shapes with three or more jet (start at as?)

At CEPC large enough statistics for precision
study

The position of peak logarithmically depends on
the sum of parton Casimir(q+q+g~2(q+7q))
Reduce sensitive to N.P. effects / enlarge the

valid region for analytic N.P. modeling
11



Summary for as measurement

Preliminary estimate of precision for as at CEPC

Current relative precision (LEP+B fact.)

Future relative precision (CEPC)

Z decay EW fit

expt. ~ 3% (mostly statistics)
theo. ~ 0.6% (pert. QCD/EW)

expt. < 0.5% (possible, systematic)
theo. ~ 0.3% (N*LO, almost there)

T decay

expt. ~ 0.5%
theo. ~ 2 — 3% (FOPT v.s. CIPT)

expt. < 0.2% (possible)
theo. ~ 1% (feasible, N*LO)

jet rates

expt. ~ 2% (exp.)
theo. ~ 2% (pert. QCD scale)

expt. < 1% (possible)
theo. < 1% (feasible, NNLO+NNLL)

event shapes

expt. ~ 1%
theo. ~ 1 — 3% (analytic v.s. MC N.P.)

expt. < 1% (possible)

theo. < 1% (feasible, @%, NLO+NLL MC)

- Determination of as promising with CEPC super Z/Higgs factory

- Large statistics at Z pole

- increased Q2 to suppressed N.P. effects

* Improvement in theory

- Alternative methods for as determination

- event shape with soft drop (suppressed N.P. effects)

- 2 3 jets event shapes (e.g. N-jettiness)

12




