Prospects for α_s measurement at CEPC

Hua Xing Zhu Zhejiang University

> IHEP, Beijing July 13rd, 2017

Introduction

- Quantitive description of nature required detailed understanding of QCD
- Strong coupling constant α_s is the most important parameter in QCD
- It's not a physical observable of the theory. It is defined in the context of perturbation theory

Measurement
$$O(\alpha_s) = O^{(0)}(\alpha_s) + \alpha_s O^{(1)}(\alpha_s) + \dots$$
 Prediction

- Measurement of α_s in different processes, from GeV (tau decay) to TeV (LHC)
- Beautiful agreement with running predicted by QCD
- Confirmation of asymptotic freedom

Why αs ?

ggF	W/Z+jets	H+jets	ttbar
O(as²)	O(as)	O(as³)	O(as²)

- α_s ~ 0.1 at Z pole: slow convergent perturbation series
- Many important processes start at O(αs²)

αs is a major source of uncertainties for Higgs production and decay [Mihaila, 1512.05194]

Channel	$M_{ m H}[{ m GeV}]$	$\Delta lpha_{ m s}$	Δm_b	Δm_c
$\mathrm{H} \to \mathrm{b} \overline{\mathrm{b}}$	126	$\pm~0.4~\%$	$\pm \ 0.8\%$	
$H \to c \overline{c}$	126	\pm 3.9 $\%$		$\pm~2.3~\%$
$\mathrm{H} \to \mathrm{gg}$	126	\pm 4.1 $\%$		

Process	Cross section(pb)	Sca	le(%)	PDF $+\alpha_s$	$\delta lpha_{ m s}(\%)$
ggH	49.87	-2.61	+ 0.32	-6.2 + 7.4	\pm 3.7
VBF	4.15	-0.4	+ 0.8	± 2.5	± 0.7
WH	1.474	-0.6	+ 0.3	\pm 3.8	± 0.9
ZH	0.863	-1.8	+ 2.7	\pm 3.7	± 0.9
ttH	0.611	-9.3	+ 5.9	\pm 8.9	\pm 3.0

Status of αs

- Current world average (PDG 16): $lpha_s(M_Z^2) = 0.1181 \pm 0.0011 (\sim 1\%)$
- Compared with other fundamental constant:

$$\begin{split} \frac{\delta G_N}{G_N} \simeq 10^{-5} & \frac{\delta G_F}{G_F} \simeq 10^{-8} & \frac{\delta \alpha}{\alpha} \simeq 10^{-10} \\ \text{gravity} & \text{weak interaction} & \text{QED} \end{split}$$

α_s is the least determined fundamental interaction constant in nature!

Surprising lack of progress

S. Forte, Lattice 2017

Determination of αs

- What observables to choose for the determination?
 - The observable's sensitivity to α_s as compared to experimental uncertainties
 - The accuracy of perturbative prediction
 - The size of non-perturbative effects
 - The scale at which the measurement is performed
- Currently lattice gives the best determination
 - missing perturbative corrections
 - non-perturbative effects in 3-4 flavor transition
- An independent determination of α_s with <1% uncertainties will be an interesting possibility for future ee collider

αs from hadronic Z decay

$$\alpha_{\text{s}} \text{ through precision measurement of:} \quad R_l^0 = \frac{\Gamma_{\text{had}}}{\Gamma_l} \qquad \sigma_0^{\text{had}} \qquad \Gamma_Z$$

$$R_l^0 = \frac{\Gamma(Z \to \text{hadrons})}{\Gamma(Z \to \text{leptons})} = R_Z^{\text{EW}} N_c (1 + \delta_{\text{QCD}} + \delta_{\text{m}} + \delta_{\text{np}})$$

$$\mathcal{O}\left(\frac{m_q^2}{M_Z^2}\right) \quad \mathcal{O}\left(\frac{\Lambda^4}{M_Z^4}\right)$$

LEP (Gfitter) $\alpha_s(M_Z^2) = 0.11196 \pm 0.0028_{\text{exp}} \pm 0.0006_{\text{QCD}} \pm 0.0006_{\text{EW}}$

- Inclusive, theoretically clean observable. Non-perturbative effects strongly suppressed
- Uncertainties dominated by experiment
- N3LO QCD known. All theoretical input known to a precision better than exp.

CEPC super Z factory 10¹¹ Z boson

A factor of 70 reduction in statistical uncertainties

$$\Delta(\alpha_s)_{
m exp} < 0.5\%$$

 $\Delta(\alpha_s)_{
m th} < 0.3\%$

At this level of accuracy, detailed analysis of systematics needed

α_{s} from hadronic T decay

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \delta_{\text{QCD}} + \delta_{\text{np}}),$$

Advantage

- Inclusive observable
- $\alpha_{\rm S}$ extraction at low scale MT=1.77GeV
- **Absolute error on α**_s shrink by an order of magnitude when evolve to Mz

Small non-perturbative corrections, consistent with experimental data

$$\delta_{\rm np} = \frac{\rm ZERO}{m_{\tau}^2} + c_4 \cdot \frac{\langle O_4 \rangle}{m_{\tau}^4} + c_6 \cdot \frac{\langle O_6 \rangle}{m_{\tau}^6} + \cdots$$

- Main theory uncertainties (~2%) from • **Fixed Order Perturbation Theory v.s. Contour Improved Perturbation Theory** (resumming log of (s/m_T^2))
- **Need N⁴LO calculation to clarify**

αs from e+e- jet rates

Banfi, 1512.05194

- event rates: fraction of events having n jets (directly sensitive to α_s)
- No analytic understanding of N.P. corrections. However, parton level MC agrees well with parton shower, indicating N.P. estimate from MC reliable
- Current uncertainties dominated by perturbative scale uncertainties

- Recent development in semi-analytic tools make NNLL possible for dijet rate resummation
- significant reduction of scale uncertainties
- Future:
 - NNLO for ≥ 4 jets production and resummation
 - analytic understanding of N.P. effects

α_s from e+e- event shape: I

Thrust

$$= \max_{\vec{n}} \frac{\sum_{i} |\vec{p}_i \cdot \vec{n}_i|}{\sum_{i} |p_i|}$$

C parameter

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_i |\vec{p}_i|)^2}$$

Large non-perturbative effects

T

$$\sim \frac{\Lambda}{Q}$$

- Largest theory uncertainties from the treatment of N.P. corrections
- Two different approach ullet
 - Estimate N.P. effects from MC
 - mismatch between parton level MC and shower
 - Analytic parameterization, simultaneous fit of α_s and N.P. parameter 9

α_s from e+e- event shape: II

Current best determination from SCET N³LL + NNLO [Hoang, et al]

Comments (Salam, 2016 KITP)

- central value too small (4 σ apart from Lattice)
- Analytic N.P. modeling valid far a way from 3-jet region, but not too deep into 2-jet region. Not clear how much of LEP data satisfy this requirement

$$\begin{array}{l} \alpha_s(M_Z^2) = 0.1135 \pm 0.0010 \; \left(\begin{array}{c} 0.9\% \end{array} \right) \quad {\sf T} \\ \alpha_s(M_Z^2) = 0.1123 \pm 0.0015 \; \left(\begin{array}{c} 1.3\% \end{array} \right) {\sf C} \; {\sf Para} \\ \\ {\sf Thrust} \; {\rm and} \; {\sf C} \; {\rm parameter} \; {\rm are} \; {\rm correlated} \end{array}$$

Prospects for CEPC

- **Provide crucial independent data to understand** whether small α_s is possible
- **Increase of Q² help reduce N.P. effects**
- large Q² separate 3-jet and 2-jet region, increase the valid region of analytic N.P. modeling
- H->gg allows study of gluon event shape for the first time
- Theory progress also expected:
 - **Resummation of Next-to-Leading Power Logs**
 - Events shape with Λ^2/Q^2 N.P. effects? (e.g., pT • like event shape)

Alternative observables ?

- From discovery tool to precision tool
 - e.g. Soft drop in light jet mass/top mass reconstruction
 - Precision calculation helps asses the robustness + understand the systematics
- Small N.P. effects on the peak, in contrast to thrust or C parameter
 - analytic understanding?
 - Further detailed study required

- Event shapes with three or more jet (start at α_s^2)
- At CEPC large enough statistics for precision study
- The position of peak logarithmically depends on the sum of parton Casimir $(q + \overline{q} + g \sim 2 (q + \overline{q}))$
- Reduce sensitive to N.P. effects / enlarge the valid region for analytic N.P. modeling

Summary for α_s measurement

	Current relative precision (LEP+B fact.)	Future relative precision (CEPC)
Z decay EW fit	expt. $\sim 3\%$ (mostly statistics)	expt. $< 0.5\%$ (possible, systematic)
	theo. $\sim 0.6\%$ (pert. QCD/EW)	theo. $\sim 0.3\%$ (N ⁴ LO, almost there)
au decay	expt. $\sim 0.5\%$	expt. $< 0.2\%$ (possible)
	theo. $\sim 2-3\%$ (FOPT v.s. CIPT)	theo. $\sim 1\%$ (feasible, N ⁴ LO)
jet rates	expt. $\sim 2\%$ (exp.)	expt. $< 1\%$ (possible)
	theo. $\sim 2\%$ (pert. QCD scale)	theo. $< 1\%$ (feasible, NNLO+NNLL)
event shapes	expt. $\sim 1\%$	expt. $< 1\%$ (possible)
	theo. $\sim 1-3\%$ (analytic v.s. MC N.P.)	theo. < 1% (feasible, Q^2 , NLO+NLL MC)

- Determination of α_s promising with CEPC super Z/Higgs factory

- Large statistics at Z pole
- increased Q2 to suppressed N.P. effects
- Improvement in theory
- Alternative methods for α_{s} determination
 - event shape with soft drop (suppressed N.P. effects)
 - ≥ 3 jets event shapes (e.g. N-jettiness)