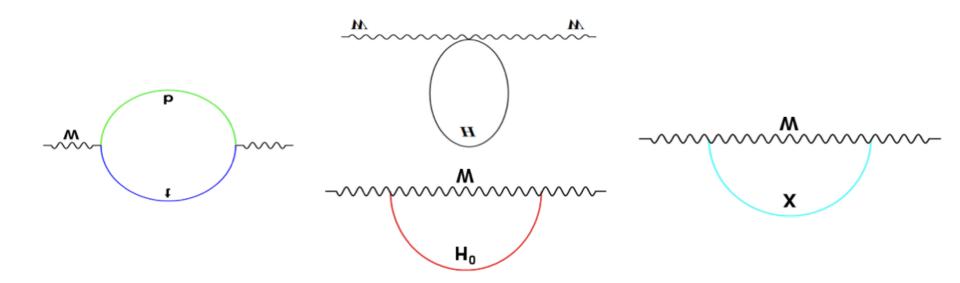


ELECTROWEAK PHYSICS TOWARDS THE CDR

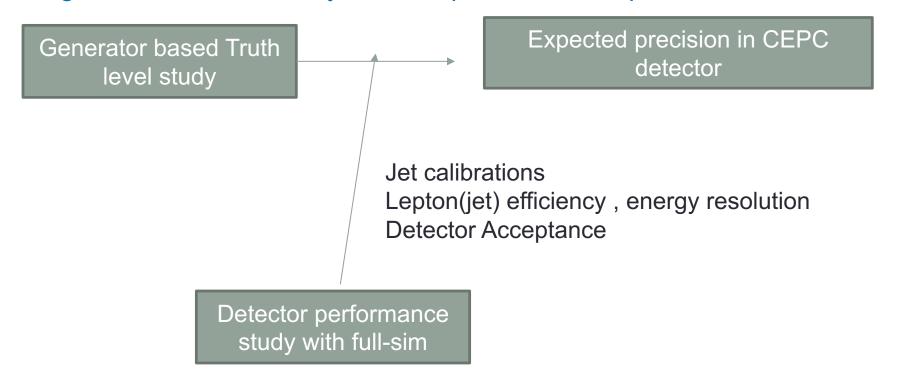
Zhijun Liang (IHEP)


CEPC electroweak

- Electron-positron circular collider
 - Higgs Factory (E_{cms}=250GeV, 10⁶ Higgs)
 - Precision study of Higgs coupling in ZH runs
 - complementary to ILC
 - See Manqi and Gang's talk this morning in Higgs section for more details
 - Z factory (E_{cms}=91 GeV, 10¹⁰ Z Boson) :
 - Precision Electroweak measurement in Z pole running
 - Major focus of this talk
- Preliminary Conceptual Design Report(Pre-CDR) available :
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- Aiming to finalize Conceptual Design Report (CDR)

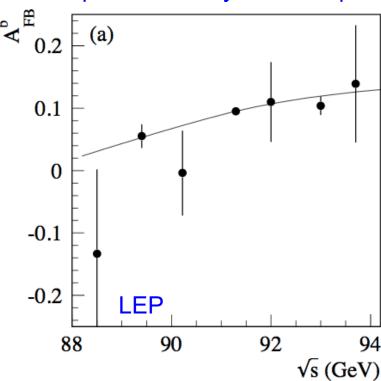
Motivation

- CEPC have very good potential in electroweak physics.
- Precision measurement is important
 - It constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

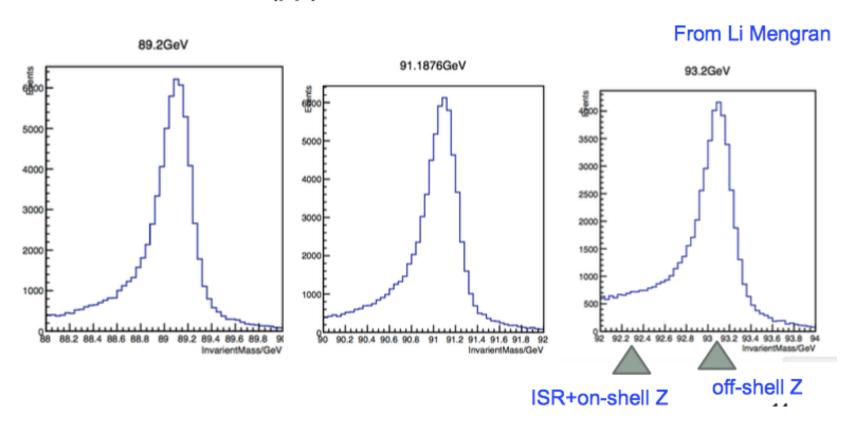

The prospect of CEPC electroweak physics in pre-CDR study

- Expected precision on some key measurements in CEPC Pre-CDR study based on projections from LEP and ILC.
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- From now to next year, plan to update the study for Conceptual Design Report (CDR) with full detector simulation

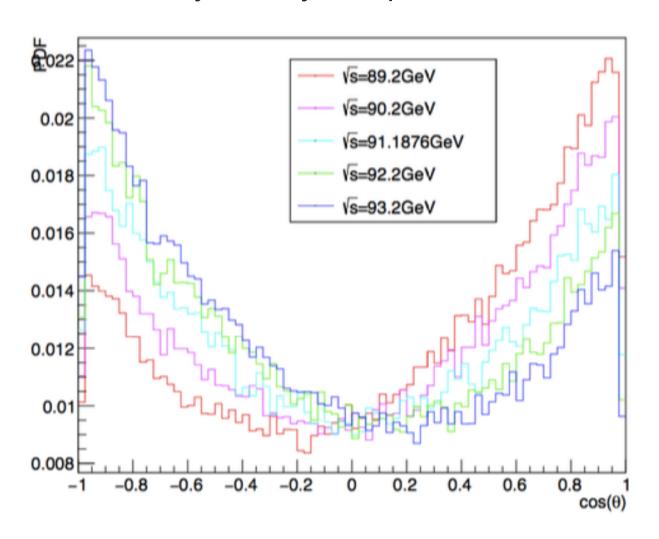
Observable	LEP precision	CEPC precision	CEPC runs
m_Z	2 MeV	0.5 MeV	Z lineshape
m_W	33 MeV	3 MeV	ZH (WW) thresholds
A_{FB}^b	1.7%	0.15%	Z pole
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.01%	Z pole
R_{b}	0.3%	0.08%	Z pole
N_{ν} (direct)	1.7%	0.2%	ZH threshold
N_{ν} (indirect)	0.27%	0.1%	Z lineshape
$R_{m{\mu}}$	0.2%	0.05%	Z pole
R_{τ}	0.2%	0.05%	Z pole


Toward CDR

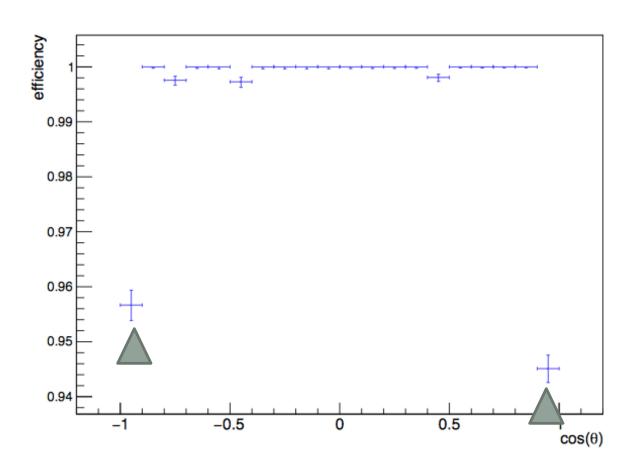
- Some key experimental systematics study in full-sim MC samples.
 - Get jet energy resolution, lepton acceptance, b tagging efficiency ...
- Expected precision for electroweak measurements can be done
 - In generator level with key detector performance input from fullsim


Weak mixing angle sin² θ_{eff}^{lept}

- LEP/SLD: 0.23153 ± 0.00016
 - 0.1% precision.
 - Stat error is one of limiting factor.
- CEPC
 - systematics error : 0.01%
 - Input From Backward-forward asymmetry measurement in Z pole Z->μμ events
 - Lepton efficiency and acceptance is one of the major systematics

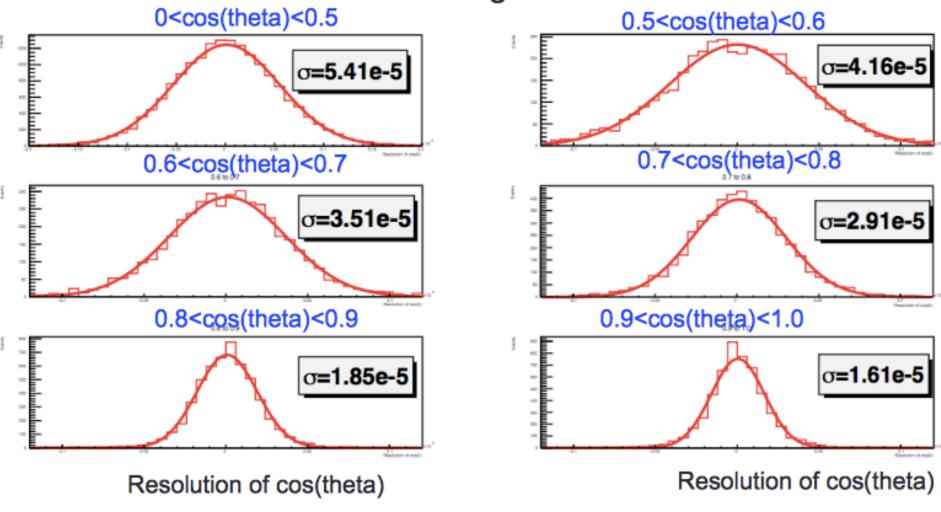

$m_{\mu\mu}$ distribution in Z pole runs

- Backward-forward asymmetry from Z->µµ in Z pole
- Generate full simulation with sqrt(s)=89.2 ... 93.2GeV
- Resolution of m(µµ) is from detector resolution


Cos (θ) of μ + in Z-> μ ⁺ μ ⁻ events

Backward-forward asymmetry in Z pole runs

Muon reconstruction efficiency in CEPC Z-> μ^+ μ^- full simulation


In-efficiency in forward regions is the key of Afb measurement.

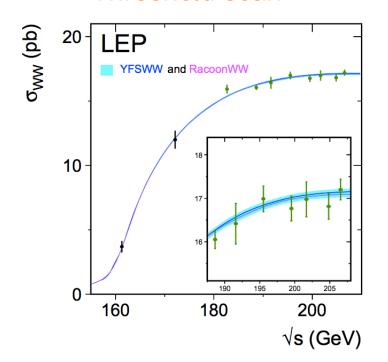
Detector resolution on cos(theta)

From Li Mengran

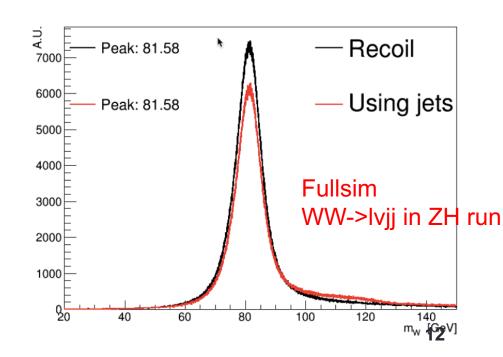
- Resolution from full simulation Z->µµ events
- Better resolution in forward regions.

Weak mixing angle analysis toward CDR

- Key detector performance inputs are almost ready
 - Lepton acceptance and efficiency map obtained
- Towards CDR
 - Estimate the expected precision using Gfitter framework with lepton performance inputs.

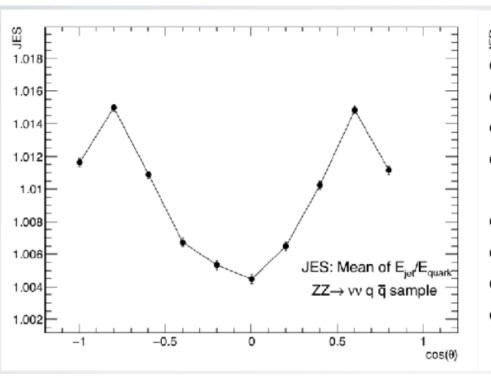

Update in W mass measurement

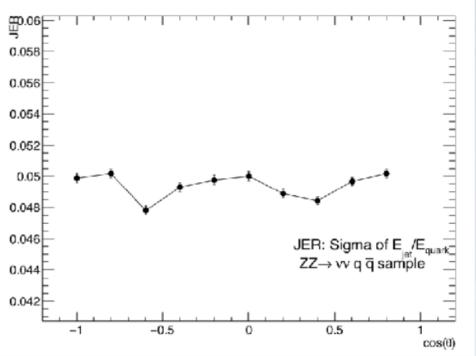
Threshold scan method


From Bo and Lesya

- Optimize off-peak runs statistics
- Check selection efficiency in different off-peak runs
- Direct measurement of the hadronic mass (method for pre-CDR)
 - Optimize W mass direct reconstruction method in ZH runs
 - Jet energy calibration

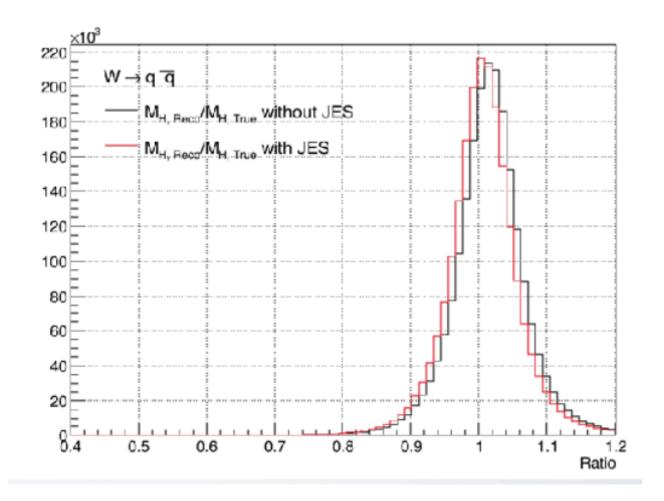
Threshold scan


Direct reconstruction

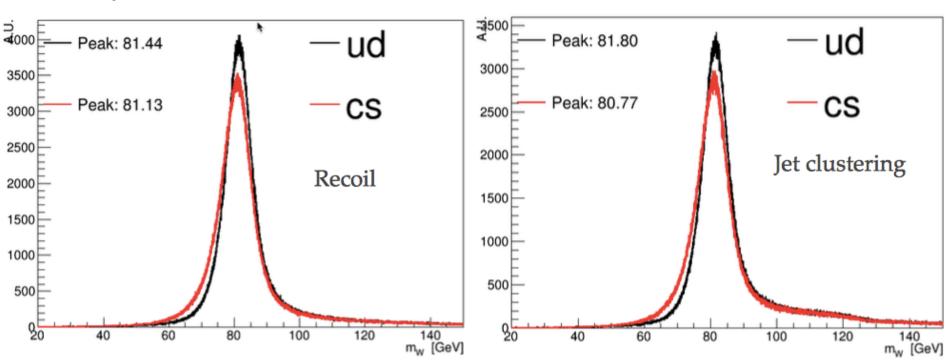


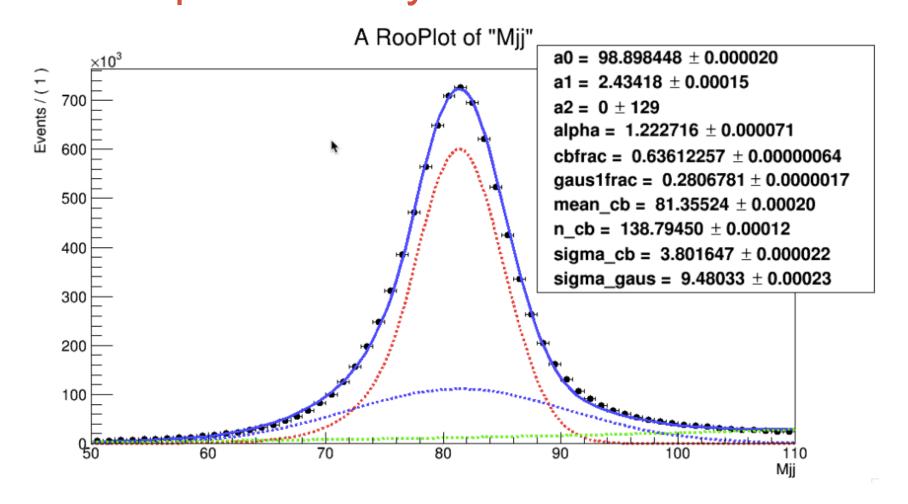
Jet energy scale and resolution

From Bo and Lesya


- Precision of Direct measurement depends strongly on
 - Jet energy calibration
- CEPC can collect 10¹¹ Z->qq events
 - can obtain a good jet energy calibration

W boson mass


 Reconstructed the W boson mass from dijet can be improved a few percent after calibrations


W mass and flavor dependence of jet energy scale

From Bo and Lesya

- Found flavor dependence on jet energy scale.
- Need to refine jet calibration, considering this dependence.

W mass reconstructed from dijet mass in semi leptonic decay From Bo and Lesya

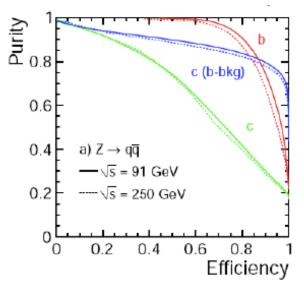
W mass analysis toward CDR

- Finalize Z->qq jet calibrations.
 - Quantify the jet energy resolution and jet angular resolution
- Apply jet energy calibration on WW->lvjj events
 - Quantify the uncertainty due to jet resolution

Major systematics in EWK measurement

	Major systematics	Other systematics
m_Z	Beam energy (10 ⁻⁵ ~10 ⁻⁶)	Luminosity measurement (10 ⁻⁴)
A _{FB} (lepton)	Beam energy (10 ⁻⁵ ~10 ⁻⁶)	Track Alignment in forward region Track angular resolution (<0.05%)
R_b	flavor tagging (light jet Bkg).	Gluon splitting modeling
A _{FB} (b)	flavor tagging (light jet and c jet background).	Jet charge
m _W (direct measurement)	Jet energy scale and resolution (<3% JER)	
m _W (threshold can)	Beam energy	Luminosity measurement
α_{QCD}	To be study	
α_{QED}	To be study	
TGC	Lepton angular resolution	

Summary


- Expected precision for electroweak measurements can be done
 - In generator level with key detector performance input from full simulation
- Updates in understanding key detector performance in precision electroweak measurements.
 - Jet energy calibration
 - Lepton accetance in CEPC detector
- Similar study can be done for other EWK topics.
 - Eg: triple-gauge coupling (TGC) from WW events
 - Lepton performance and jet energy resolutions in place.
- Welcome to join this effort

B tagging performance in Branching ratio

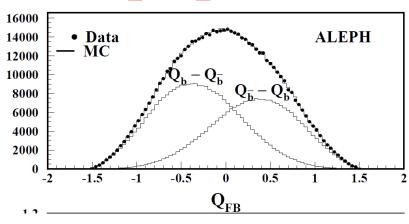
(R^b)

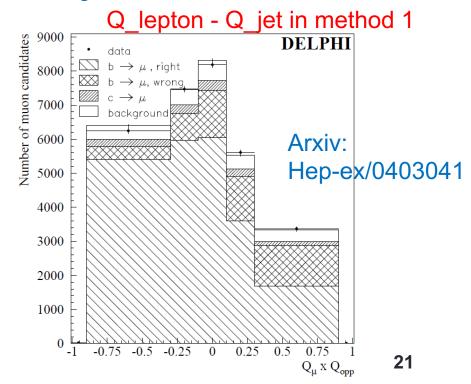
$$\frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to had)}$$

- Major systematics is from light jet and c jet background
- can be reduced by improving the b tagging performance
- Need fullsim to validate its performance

Uncertainty	LEP CEPC		CEPC improvement		
hemisphere tag correlations for b events	0.2%	0.1%	Higher b tagging efficiency		

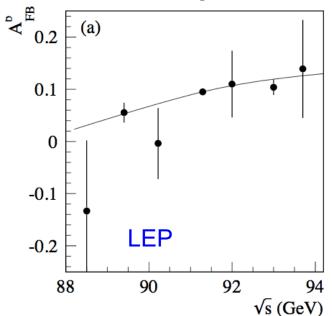
Backward-forward asymmetry measured from b jet


 $A_{FR}^{b\bar{b}}(0)$


- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_lepton) and jet charge (Q_jet)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Select two b jets
 - use event Thrust to define the forward and background
 - Use jet charge difference (Q_F Q_B)

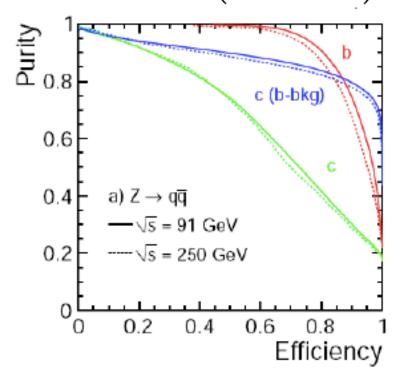
Arxiv:

Hep-ex/0107033


Q_F - Q_B in method 2

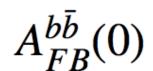
Weak mixing angle sin² θ_{eff} lept

- LEP/SLD: 0.23153 ± 0.00016
 - 0.1% precision.
 - Stat error is one of limiting factor.
- CEPC
 - systematics error: 0.01%
 - Input From Backward-forward asymmetry measurement
 - The precision mZ is another limiting factor (uncertainty on P_{beam})
 - If mZ is not well measured in CEPC,
 - We need a large statistics of off-Z peak runs for weak mixing angle



CEPC off-peak runs stat

Branching ratio (Rb)


 $\frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to had)}$

- LEP measurement 0.21594 ±0.00066
 - Stat error : 0.44%Syst error : 0.35%
 - Typically using 65% working points
- CEPC pre-CDR
 - Expected Stat error (0.04%)
 - Expected Syst error (0.07%)
 - Expect to use 80% working points
 - 15% higher efficiency than SLD
 - 20-30% higher in purity than SLD

Uncertainty	LEP	CEPC	CEPC improvement
charm physics modeling	0.2%	0.05%	tighter b tagging working point
hemisphere tag correlations for b events	0.2%	0.1%	Higher b tagging efficiency
gluon splitting	0.15%	0.08%	Better granularity in Calo

Backward-forward asymmetry measured from b jet

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Method 3: D meson method (>8%, less important method)
- CEPC pre-CDR
 - Focus more on method 2 (inclusive b jet measurement)
 - Expected Systematics (0.15%):

Uncertainty	LEP	CEPC	CEPC improvement
charm physics modeling	0.2%	0.05%	tighter b tagging working point
tracking resolution	0.8%	0.05%	better tracking resolution
hemisphere tag correlations for b events	1.2%	0.1%	Higher b tagging efficiency
QCD and thrust axis correction	0.7%	0.1%	Better granularity in Calo

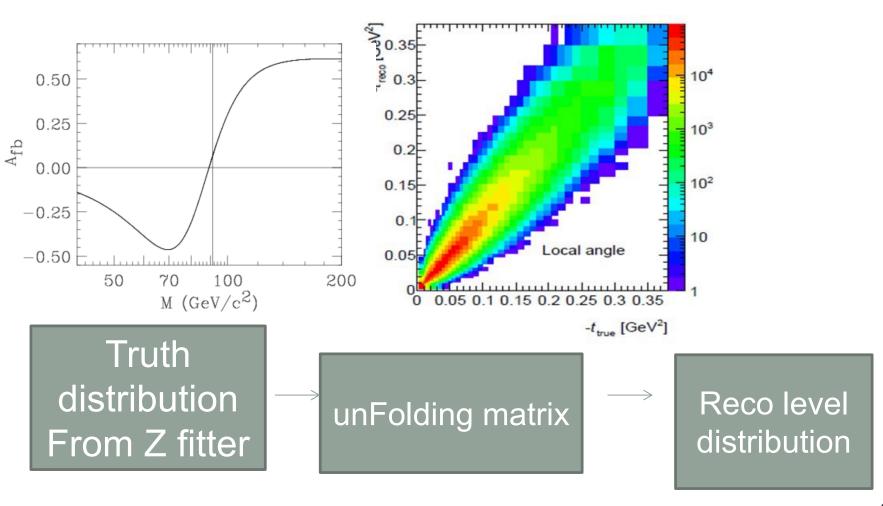
Summary

- CEPC electroweak physics in Preliminary Conceptual Design Report.
 - Expected precision based on projections from LEP and ILC.
- Aim for more realistic study with full simulation for CDR next year.
 - Mainly focus on a few key measurements.
 - m_W
 - Weak mixing angle
 - mZ

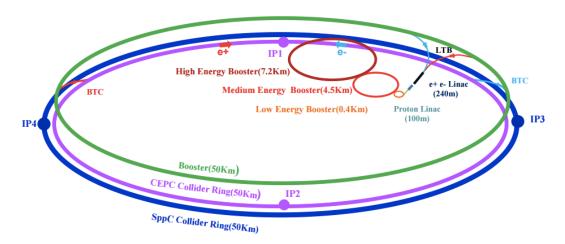
Welcome to join this effort

Urgent open task

- 1. W mass measurement
 - Try to understand the precision with direct measurement approach
 - Design dedicated runs for WW threshold scan approach
- 2. Detector optimization using Z->bb R(b) measurement as benchmark model.
 - Pixel size optimization:
 - Baseline 16x16µm
 - Whether we need high resolution both direction
 - Is 16x32 µm OK ?
 - Momentum resolution requirement
 - Impact parameter requirement

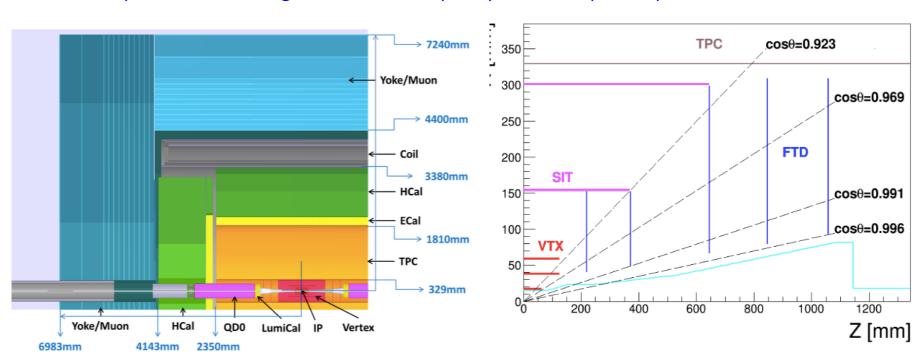

From Pre-CDR to CDR

- Propagate beam momentum scale uncertainty to all EW measurement.
- Give a clear physics requirement to accelerator

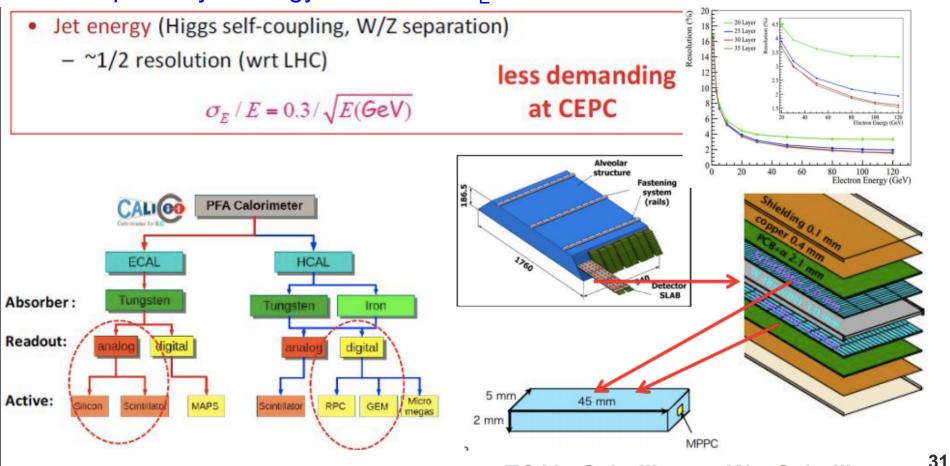

		Correlations				
		$m_{ m Z}$	$\Gamma_{ m Z}$	$\sigma_{ m had}^0$	R_ℓ^0	$A_{ m FB}^{0,\ell}$
$\chi^2/\text{dof} = 172/180$		ALEPH				
	91.1893 ± 0.0031	1.000				
$\Gamma_{\rm Z} [{ m GeV}]$	2.4959 ± 0.0043	0.038	1.000			
$\sigma_{ m had}^0 [m nb]$	41.559 ± 0.057	-0.092	-0.383	1.000		
R_ℓ^0	20.729 ± 0.039	0.033	0.011	0.246	1.000	
$A_{ m FB}^{0,\ell}$	0.0173 ± 0.0016	0.071	0.002	0.001 -	-0.076	1.000

Plan for Weak mixing angle

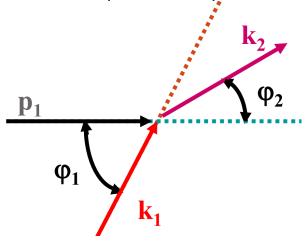
More details in Mengran's talk


CEPC accelerator

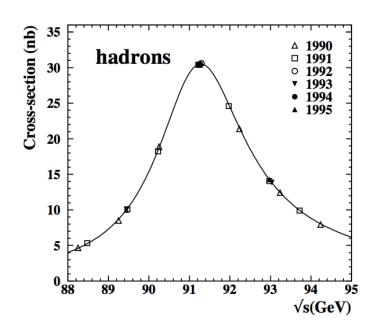
- Electron-positron circular collider
 - Higgs Factory (E_{cms}=250GeV, 10⁶ Higgs)
 - Precision study of Higgs coupling in ZH runs
 - complementary to ILC
 - See Manqi and Gang's talk this morning in Higgs section for more details
 - Z factory (E_{cms}=91 GeV, 10¹⁰ Z Boson) :
 - Precision Electroweak measurement in Z pole running
 - Major focus of this talk
- Preliminary Conceptual Design Report(Pre-CDR) available :
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- Aiming to finalize Conceptual Design Report (CDR) next year


CEPC detector (1)

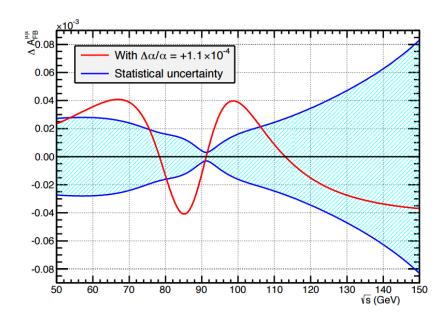
- ILD-like design with some modification for circular collider
 - No Power-pulsing
- Tracking system (Vertex detector, TPC detector, 3.5T magnet)
 - Expected Pixel size in vertex detector: less than 16x 16µm
 - Expected Impact parameter resolution: less than 5µm
 - Expected Tracking resolution : δ(1/Pt) ~ 2*10⁻⁵(GeV⁻¹)


CEPC detector (2)

- Calorimeters:
 - Concept of Particle Flow Algorithm (PFA) based
 - EM calorimeter energy resolution: $\sigma_E/E \sim 0.16/\sqrt{E}$
 - Had calorimeter energy resolution: $\sigma_F/E \sim 0.5/\sqrt{E}$
 - Expected jet energy resolution : $\sigma_F/E \sim 0.3/\sqrt{E}$

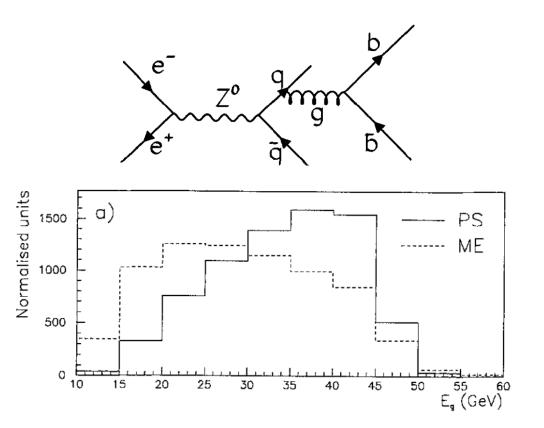

Task 1: Beam energy measurement

- Resonant depolarization method. (LEP approach)
 - Urgently need Beam polarization design in CEPC
 - Whether CEPC can have bunch with polarization and how long it lasts
 - Polarization fraction in Z and WW threshold
- compton scattering approach
 - Whether it can reach 1MeV precision from this approach
 - preliminary study in G-Y. Tang's talk
 http://indico.ihep.ac.cn/event/6495/session/4/contribution/29/material/slides/0.pdf

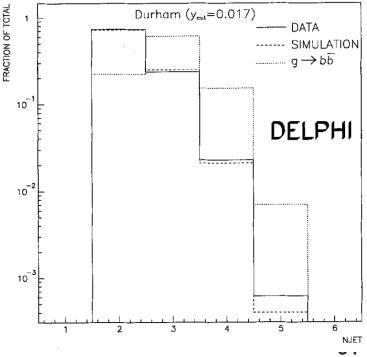


Task 2: optimizing Z threshold scan

- Optimize off-peak runs statistics for Z line shape and α_{QED} shape
 - Check event selection efficiency as a function of beam energy
- Fcc-ee colleague proposed to take more data around 87 and 94 GeV off-peak runs for α_{OFD} shape
- \blacksquare Need fastsim study to check α_{OFD} measurement



P. Janot, JHEP 1602 (2016) 053



Branching ratio (Rb): task: gluon splitting measurements

- To reduce the R_b systematics
- One of the task is to measure gluon splitting

Phys Lett B 405 (1997) 202

