

The geo-neutrino study at JUNO

HAN Ran (韩然)

Beijing Institute of Spacecraft Environment Engineering

(北京卫星环境工程研究所)

LI Yufeng (李玉峰)

IHEP (高能物理研究所)

Outline

>What can JUNO geo-neutrino help geoscience

Improve the crust models with particle physics point of view Estimate the radioactive heat from U+Th by JUNO geo-v Measure Th/U ratio through JUNO geo-v Evaluate mantle structure using JUNO geo-v Discuss other potential geo-scientific goal

How can build community between particle physicists and geo scientist

Experience from SNO+ in Canada Experience from KamLAND in Japan Start from the local refined geology model(3D/4D model)

What is Geo-v and JUNO ability

$^{238}\text{U} \longrightarrow ^{206}\text{Pb} + 8\alpha + 6\text{e}^- + 6\bar{\nu}_e$	$+ 51.698 \mathrm{MeV}$
232 Th $\longrightarrow ^{208}$ Pb + 6 α + 4 e ⁻ + 4 $\bar{\nu}_{e}$	$+\ 42.652 \mathrm{MeV}$
${}^{40}\mathrm{K} \xrightarrow{89.3\%} {}^{40}\mathrm{Ca} + \mathrm{e}^- + \bar{\nu}_\mathrm{e}$	$+1.311{ m MeV}$
${}^{40}\mathrm{K} + \mathrm{e}^{-} \xrightarrow{10.7\%} {}^{40}\mathrm{Ar} + \nu_{\mathrm{e}}$	$+1.505\mathrm{MeV}$

 $\overline{\nu}_e + p^+ \rightarrow n + e^+$

- ► 1.8 MeV Energy Threshold
- ➢ 20 kton LS target
- ► 3% Energy Resolution

The Existing Geo-v Experiments

KamLAND, Japan (1kt)

Borexino, Italy (0.6kt)

 $N_{geo} = 116 \pm 28$ (8.9y) $N_{geo} = 23.7 \pm 6.5$ (5.7y)

> 408/y is a huge number, better than all the existing experiments. \succ Even with this small number 25, The paper is the cover of nature.

How precise of JUNO Geo-v measurement

How we estimate Geo-v in JUNO?

Huang et al (2013) G-cubed arXiv:1301.0365

Geo-v signal on Earth Surface

Geoneutrino signal in TNU

Earth structure (ρ and *L*) and **chemical composition** (*a*)

The Earth Structure Models and Chemical Composition Models

Earth Structure Models (p and L)

Global Models : Crust2.0 Crust1.0 Litho1.0 **Chinese Local Models:** SUN YS et.al and Huang et.al *From ZHAO Liang*

Chemical composition Model (α)

Layers	^{238}U	^{232}Th	
OC Sediment	$1.73\pm5\%$	$1.73\pm5\%$	Plank,2014
OC Crust	$0.07\pm30\%$	$0.21\pm30\%$	White and Klein,2014
Sediment	$1.73\pm5\%$	$1.73\pm5\%$	Plank,2014
Upper Crust	$2.7 \pm 21\%$	$10.5\pm10\%$	Rudnick and Gao,2003,2014
Middle Crust	$1.3\pm31\%$	$6.5\pm8\%$	Rudnick and Gao,2003,2014
Lower Crust	$0.20\pm30\%$	$1.2\pm30\%$	Rudnick and Gao,2003,2014
CLM	$(33^{+49}_{-20}) \times 10^{-3}$	$(150^{+277}_{-97}) \times 10^{-3}$	Huang,2013

More details see Ondrej's talk in the afternoon

Geo-neutrino study can improve the models

Analysis Method is one of the contribution to geo-science

JUNO Geo-v contribution to geo-science(I)

Improve the quality of geo physical/chemical models!

• Weird points in Litho1.0 Thickness is negative.

latitude longitude thickness depth to bottom 14.5 -165.5 -4.229 1.694 2551.2 -122.9 -1.537 2.393 2422 14.5 -50.5 -0.109 21.5 -3.57893.5 -64.25 165. -2.949 -0.625 -3.672 4.685 -3.064 -21.057

Ondrej/Beda are working on this see Ondrej's talk

• Huang's model: thickness is an integer, very rough model.

70E-130E, 20N-55N70 130 20 55

					-
5. ON	70.0E 17	0			
Thick	Vp	Vs	Poisson	Density	Depth
2.0	5.009	2.892	0.25	2.502	2.0
4.0	5.566	3.214	0.25	2.613	6.0
7.0	5.748	3.319	0.25	2.650	13.0
15.0	6.206	3.583	0.25	2.762	28.0

Jincheng combine Litho1.0 to fix this Geophysical model into a Lithology distribution model. • High uncertainties of chemical composition model

Layers	^{238}U	^{232}Th
OC Sediment	$1.73 \pm 5\%$	$1.73 \pm 5\%$
OC Crust	$0.07\pm30\%$	$0.21 \pm 30\%$
Sediment	$1.73 \pm 5\%$	$1.73 \pm 5\%$
Upper Crust	$2.7 \pm 21\%$	$10.5 \pm 10\%$

Yufei and Jincheng collected more samples around JUNO to reduce the uncertainties See Yufei's talk

JUNO Geo-v flux with different models

10

JUNO Geo-v contribution to geo-science(II)

Constrain the range of radiogenic heat contribution

JUNO Geo-v contribution to geo-science(III)

- The difference between κ_{Pb} and κ_{meas} indicates that U6+ recycled back into mantle sometime during the Earth's history
- ➤ the BSE κ_{Pb} dictates that Th and U were excluded from the core.
- The small difference between ccKpb and MMKpb indicates that U recycling was a relatively recent process or that limited recycling followed atmospheric oxygenation at 2.4Ga and evolved slowly with time.

Estimate from lead radiogenic isotope ratio—time integrated kappa ratio(κ_{Pb}) $\kappa_{Pb} = \frac{\left(\frac{2^{08}Pb}{2^{06}Pb}*\right) * (e^{\lambda^{238}T} - 1)}{e^{\lambda^{232}T} - 1}$

See GUO Meng's poster

MORB	K _{meas}		К _{Рb}	
	n= 2,558	2.98 ^{+0.81} -0.64	n= 936	3.84 ^{+ 0.09} -0.09
СС	n= 68,886	3.96 ^{+5.44} -2.04	n= 6,247	4.01+0.27-0.25
CC (both K's)	n= 9,313	4.18 ^{+2.70} -1.55	n= 9,313	4.09+0.19-0.18
OIB	n= 3,496	3.12 ^{+2.84} -1.54	n= 7,690	3.92 +0.12 -0.12

JUNO Geo-v provide a new way to do Th/U ratio!₁₂

The potential of Th/U ratio at JUNO

For ten years of running, accuracy of 35% and 20% respectively can be obtained at DYB reactor shape

For ten year of running, accuracy of 30% and 15% respectively can be obtained at 1% reactor shape uncertainty

The uncertainty of Th/U ratio is around 26%

JUNO Geo-v contribution to geo-science(IV)

JUNO Geo-v apply a new way to see deep the Earth ---Mantle

The potential of Mantle measurement at JUNO

R(Mantle)=R(total, exp.)-R(Crust, pred.)

- At 1 sigma range mantle: 9 ± 2 TNU
- To separate the mantle and curst 18% crust uncertainty: confidence level at 2sigma 8% crust uncertainty: confidence level at 3.7sigma
- Refined local model is very important

Comparison of the global reference model(18% crust) and a benchmark accuracy of the local model (8% curst)

From geo-neutrino to geo-science

Geoneutrino prediction from Šrámek et al. 2016 doi:10.1038/srep33034

- Using geo-neutrino to solve the geo-problem is not far from us!
- What else can help in geo-science, we can work together to see the possibility!

Experience from SNO+ in Canada

Geology: for sample collection Geochemistry : ICPMS/HPGe + Physics abundance analysis

East Bull Lake intrusive suite

Seismology+Geo-physics: Cross section, seismic data Give the map with error

Modeling the TMC, TLC and MD

Inputs

Tonalite gneiss

Depth-controlling points obtained by 15 refraction lines, 3 reflection lines and data from 32 seismographic stations.

ORDINARY KRIGING: a stochastic estimator that considers the **spatial continuity** of input variables and infers the values in unobserved locations providing the result in term of **probability**: it's possible to quantify the **estimation errors**.

Output • Estimated maps of TMC, TLC and MD depth with a 1 km × 1 km resolution. • Maps provides the Normalized Estimation Errors (NEE).

All: interpolation geophysical model to Lithology distribution

Local 3D models

Experience from KamLAND in Japan

Dataset Used for Local Tomography in Japan

Dataset for Local Tomography

red: event, blue: station

Direct P and S waves samples almost all crust in Japan.

Large number of data (> 15 yrs) have been accumulated.

77,730 events 768 stations 3,249,949 P-wave data 2,273,571 S-wave data Developing a quantitative method for translating a geophysical model (tomography model) into a lithology distribution model

The method can take

- local features in Japan and
- uncertainties in geophysical models

into account.

Comparison with Conventional Geological Approach

our model

The need of refined local(south China)model

Private Advisory Organ -> Working Group

Lessons from KamLAND (Janpan)

N. Takeuchi (seismology) M. Yamano (heat flow) T. lizuka (geochemisty)

H. Tanaka (physics)

H. Watanabe (physics) A. Taketa (physics)

Y. Shirahata (physics)

S. Enomoto (physics)

- W. Mcdonough (geochemistry) M. Fabio (physics) H. Iwamori (petrology)
- + others

action(%) UC/Tot(%) 0.8 S(U+Th) 0.7 0.5 0.4 0.3 0.2E 0.1 00^E 700 100 200 300 400 500 600 Distance to JUNO(km)

Build the geo-science and particle physics Community Geology

<u>Seismology</u> Heat flow Geochemistry Geophysics Petrology Physics

