Overview of the JUNO experiment

Liangjian Wen

Continental margin in South China workshop, Jul 21-23, 2017

Neutrino as fundamental particles

Standard Model of Elementary Particles:

a) Three generations of quarks and leptons

b) Gauge bosons as force carriers:

strong interaction (8 gluons)

Weak interaction (W & Z)

Electromagnetic interaction (γ)

Gravitation (Graviton?)

Massive neutrinos are already the Physics beyond the Standard Model

Neutrinos as comic messengers

Neutrino Oscillation Theory

Two-flavor mixing $\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$

Pontecorvo, 1957; Maki, Nakagawa, Sakata, 1962

Neutrino Oscillations: quantum phenomena of massive neutrinos at the macroscopic distances

Future Neutrino Puzzles

Reactor Neutrino Oscillation

Jiangmen Underground Neutrino Observatory

JUNO has been approved in Feb. 2013. ~ 300 M\$ by China

- 20 kton LS detector
- 3%/sqrt(E) energy resolution
- 700 m underground
- Rich physics possibilities
 - Reactor neutrino for Mass hierarchy
 - Precision measurement of oscillation parameters
 - Supernovae neutrino
 - Geoneutrino
 - Solar neutrino
 - Atmospheric neutrino
 - Exotic searches including proton decay, dark matter

Neutrino Physics with JUNO, J. Phys. G 43, 030401 (2016)

The JUNO Experimental Site

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW
Overbure	den ~ 700 m			Previous site candidate	
Kaiping, Jiang Men Guangdor	n city, ng Province	Guang 2.5 h drive	Zhou, cns Shen Zhen	Huizhou N	Lufeng NPP
JU 20kt	NO, on LS	Chongshan Zhu Ha Zhujiang River Estur	hi Ity ↔ Hong Gau Hong Ko cau	Kong Daya Bay NPP	Daya Bay Exp., 4*20ton Gd-LS
53 kr	n	Taishan NF	PP	J	. Phys. G43:030401 (2016)
Yangjian	g NPP				arXiv: 1507.05613)

Reactor $\overline{\mathbf{v}}$ Detection

Inverse- β reaction (IBD) $\overline{\nu}_{e} + p \rightarrow e^{+} + n$ Liquid scintillator technology 0.9 Antineutrino flux Inverse beta decay cross section (cm²) Measured spectrum 0.8 Antineutrinos / MeV / fission 0.7 Close Close 0.6 0.5 235U 0.4 239Pu 238[] 241Pu 0.2 7.9 MeV 0.1 2.2 Me 2 3 5 6 7 8 9 0 Antineutrino energy (MeV) reconstructed neutron (delayed) capture energy spectrum $t_{\rm cap} \sim 200 \ \mu {\rm s}$ 10350 300 $\langle t_{\rm cap} \rangle \approx 28 \ \mu {\rm s}$ EnergyRecon 75959 Entries Mean RMS 2.22 Capture on H Underflow Overflow 250 (complementary) nH nGd (main) 200 Capture on Gd 150 $E_{\overline{v}} \cong T_{e^+} + T_n + (M_n - M_p) + m_{o^+}$ 0.1% Gd 100 50 10 10 10-40 keV 1.8 MeV: Threshold 12 Recon. Energy (MeV)

Principle to Determine NMO

Independent on CP phase and θ_{23} (Acc. & Atm. do) Energy Resolution is the key

Sensitivity on Neutrino Mass Ordering

	Ideal	Core distr.	DYB & HZ	Shape	B/S (stat.)	B/S (shape)	$ \Delta m^2_{\mu\mu} $
Size	52.5 km	Real	Real	1%	6.3%	0.4%	1%
$\Delta \chi^2_{MH}$	+16	- 3	-1	- 1	- 0.6	- 0.1	+ (4-12)

Precision Measurement

		Δm_{21}^2	$ \Delta m_{31}^2 $	$\sin^2 \theta_{12}$	$\sin^2 heta_{13}$	$\sin^2 \theta_{23}$
Current precision	Dominant Exps.	KamLAND	MINOS	SNO	Daya Bay	SK/T2K
	Individual 1σ	2.7% [20]	4.1% [25]	6.7% [6]	10% [21]	$14\% \ [23, 24]$
	Global 1σ	2.6%	2.7%	4.1%	8.6%	11%

Probing the unitarity of U_{PMNS} to ~1%, more precise than CKM matrix elements!

Supernova neutrinos at JUNO

Measure energy spectra & fluxes of almost all types of neutrinos

Typical galactic SN assumptions: 10 kpc galactic distance, 3×10^{53} erg, L_v the same for all types

Diffuse Supernova Neutrino Background

0.5 12 13 20 21 14 15 16 17 18 19

- **DSNB:** Past core-collapse events
 - Cosmic star-formation rate
 - Core-collapse neutrino spectrum
 - Rate of failed SNe

Item		Rate (no PSD)	PSD efficiency	Rate (PSD)
Signal	$\langle E_{\bar{\nu}_e} \rangle = 12 \text{MeV}$	12.2	$\varepsilon_{\nu} = 50 \%$	6.1
	$\langle E_{\bar{\nu}_e} \rangle = 15 \text{MeV}$	25.4		12.7
	$\langle E_{\bar{\nu}_e} \rangle = 18 \text{MeV}$	42.4		21.2
	$\langle E_{\bar{\nu}_e} \rangle = 21 \text{MeV}$	61.2		30.8
Background	reactor $\bar{\nu}_e$	1.6	$\varepsilon_{\nu} = 50 \%$	0.8
	atm. CC	1.5	$\varepsilon_{\nu} = 50 \%$	0.8
	atm. NC	716	$\varepsilon_{\rm NC} = 1.1 \%$	7.5
	fast neutrons	12	$arepsilon_{ m FN}=1.3\%$	0.15
	Σ			9.2

10 Years' sensitivity

Syst. uncertainty BG		5	5%	20%		
$\langle E_{\bar{\nu}_e} \rangle$		rate only	spectral fit	rate only	spectral fit	
12	MeV	1.7σ	1.9σ	1.5σ	1.7σ	
15	MeV	3.3σ	3.5σ	3.0σ	3.2σ	
18	MeV	5.1σ	5.4σ	4.6σ	4.7σ	
21	MeV	6.9σ	7.3σ	6.2σ	6.4σ	

J. Phys. G43:030401 (2016)

 $\langle E(\overline{v}_{o}) \rangle [MeV]$

Other Physics Topics

- Geo-v measurement at JUNO
 - Huge reactor neutrino backgrounds
 - Need accurate reactor spectra

Others (atmospheric neutrinos, sterile neutrinos, proton decay, neutrinos from dark matter... etc) were not included in this talk

JUNO Underground Laboratory

JUNO Detector

Overview of JUNO PMT systems

20" PMT (~75% photo-coverage)

3" PMT (~2% photo-coverage)

A Demo for the PMT module

20" MCP-PMT 15,000

20" Dynode-PMT 5,000

3.1" PMT 25,000

JUNO 20-inch PMTs

Underwater implosion tests

6 times of protection tests under 0.5MPa water since 2016, a baseline solution has been found

1st test

2nd test

3rd test

4th test

5th test

6th test

Latest design of CD

Four systems for LS purification: Al₂O₃ column, distillation, stripping, water extraction

Requirements: Optical : > 20m A.L @430nm Radio-purity: < 10⁻¹⁵ g/g (U, Th)

Full systems tested in Daya Bay LS hall. A new batch of purified LS was produced and filled into DYB-AD1.

JUNO-LS Pilot plant

JUNO Schedule

- Civil preparation: 2013-2014
- Civil construction: 2014-2018
- Detector component production: 2016-2017
- Detector assembly & installation: 2018-2019
- Filling & data taking: 2020-2021

Future Plan

- Run for 20-30 years
- Likely, double beta decay experiment in 2030

Thanks!

Reactor Neutrinos

- Discovery of neutrino in 1956
- Early search for oscillation 70's-80's
- Small θ_{13} in 1990s

Electronic bay

- limit on neutrino magnetic moment (00's)
- Observation of reactor $\overline{\nu_e}$ disappearance in 2003
- Discovery of non-zero θ_{13} in 2012
- Mass hierarchy and precision measurements
- Sterile neutrinos, Magnetic moment, ...

R&D of 20" MCP-PMT

