Overview of Current Geoneutrino Measurements and Their Impact on Geoscience

Bedřich Roskovec Pontificia Universidad Católica de Chile

Neutrinos

Neutrinos everywhere - second coss-Section (mb) most abundant particle 10 10" Neutrinos carry lot of 1011 information about universe 10" 10⁻¹⁹ And indeed about Earth! 10-22 10⁻²⁵ Not easy to get these Big Bang 10'20 information <- hard to detect

Extra-Galactic Galactic Accelerator Atmospheric SuperNova Solar Reacto **Ferrestria** 10 10-2 10¹² 1014 10¹⁶ 10¹⁸ 104 Neutrino Energy (eV) • Small for v_{geo}'s Number of detected neutrinos (N_v): • Measurable for v_{geo}'s $N_v \sim (Cross-section \times Neutrino flux \times Number of targets)$

 Need to be large for v_{geo}'s

(10¹⁰-3) v

Weak interactions are weak:

10¹⁰

MeV

Golden Era of Neutrinos (Selection of Milestones)

Geoneutrinos in One Slide

Geov Measurements Overview

- Inverse beta decay (IBD) Only feasible method of today and near future for detection of ~MeV electron antineutrinos
- Strong in background rejection due to coincidence of prompt and delayed signal

Coincidence

IBD Backgrounds for Geoneutrinos

Geoneutrino Measurements so far

1 TNU (Terrestrial Neutrino Unit) = 1 event detected by IBD per year on 10³² protons

TNC

KamLAND Experiment

Event Rate for Signal Energy Window*

KamLAND Latest Geoneutrino Result (1)*

2016 Preliminary Result

Livetime : 3900.9 days

Candidate : 1130 ev

Background Summary

⁹ Li	3.4 ± 0.1
Accidental	114.0 ± 0.1
Fast neutron	< 4.0
¹³ C(α, n) ¹⁶ O	205.5 ± 22.6
Reactor \overline{v}_e	618.9 ± 33.8
Total	941.8 ± 40.9

	Background	How to tackle
	Accidentals	Well-known
	Cosmogenic background (fast neutrons, ⁹ Li/ ⁸ He)	Be deep underground
	¹³ C(a,n) ¹⁶ O	Purification of LS
	Reactor neutrinos!	Reactors off
· · · · · · · · · · · · · · · · · · ·	Zoom in 1259.8 days: Reactors off, purified scintillator 9Li KamLAND data 3.4 ± 0.4 Accidental 114.0 ± 0.1 $^{13}C(\alpha, n)^{16}O$ $205.5 \pm 22.6^{+}$ best-fit geo \bar{v}_e 6 Reactor \bar{v}_e 618.9 ± 33.8 Preliminary F_{eff} 5 6 E_p (MeV) Wetapabe (K aml AND Collaboration): the topolety ac in/event/4131 btr	
*Watanabe (KamLAND Collaboration): tfc.tohoku.ac.jp/event/4131.html		

B. Roskovec

Geov Measurements Overview

KamLAND Latest Geoneutrino Result (2)*

BOREXINO in One Slide

Gran Sasso

- Much better purity of LS than KL
- Smaller mass (280 t of LS) compare to KL
- Uncertainty ~26%

Italy

Geov Measurements Overview

The Impact of Geoneutrino Measurements on (Geo)science

Successes

- We measured geoneutrinos!!!
- We observed neutrino flavor changing in geoneutrinos
- Call for improvement of the precision
 - Independent measurement of U and Th flux not there yet
 - Needed for determination of ratio $R_{Th/U}$
 - KamLAND and BOREXINO measurements consistent with uniform flux
 - Breakdown to Crust&Mantle contribution unknown

Unprecedented Achievement in 1953

 29.5.1953 - Sir Edmund Hillary and Tenzing Norgay reached as the first men the top of Mt. Everest

- They show the way for they followers
- History will always remember them

- They boldly went where no man has gone before
- Sure it was not easy

Unprecedented Achievement in 1953

2005/2010 KamLAND 28.5.1953 - Sir Edmund Hillary and

men the top of Mt. Everest experiments geoneutrinos

BOREXINO measured I Tenzing Norgay reached as the first

They boldly went where no man has gone before

Sure it was not easy

- They show the way, what can be done
- They show the way for they followers
- History will always remember them
- Foundations of new field:
 GEONEUTRINO PHYSICS

Prediction vs. Measurement

1 TNU (Terrestrial Neutrino Unit) = 1 event detected by IBD per year on 10^{32} protons

TNU

Flavor Changing in Geoneutrinos

(Geo)neutrinos do oscillate!
 See Wang Yifang talk

$$\frac{d\phi(\vec{r}, E)}{dE} = n(E) \int \frac{P(E, |\vec{r} - \vec{r'}|)}{4\pi |\vec{r} - \vec{r'}|^2} \frac{XN_A}{\tau A_r} f_m(\vec{r'}) \rho(\vec{r'}) d\vec{r'}$$

- $\langle P(\overline{v}_e \rightarrow \overline{v}_e) = 0.544$ If there are no oscillations -> double flux
- Measurement (particle physics) being consistent with prediction (geophysics) is yet another demonstration of neutrino flavor changing!
- Can we even see oscillations? Eventually...

Call for Precise Measurement (1)

Call for Precise Measurement (2)

- Independent fit of Th and U flux: Proper way how to analyse data
- Current results not sufficient
 - Th flux consistent with zero
 - Large uncertainty on RTh/U

 Geoneutrinos can reveal the contribution of cooling/heat sources to the drive of Earth dynamics - depends on radionuclides in the mantle

Conclusions

- Geoneutrinos were measured by KamLAND and BOREXINO
- The foundation of the experimental geoneutrino physics has been laid
- Geoneutrinos carry information about Earth's interior
- Precise measurements as well as precise predictions needed to access to this information
- The message is positive we know how to do both (See talks of other speakers)

