Introductory remarks

João Guimarães da Costa (Beijing)

May 3rd 2017

Institute of High Energy Physics Chinese Academy of Sciences

Wuhan: CEPC Workshop, Apr 19-21 http://indico.ihep.ac.cn/event/6433/

Serious homework to do...

中国科学院高能物理研究所

Wuhan Workshop

Wednesday parallel sessions: CDR discussions

11:00	Light-quark Jun GAO Yukawa couplings and hadronic event shapes in Higgs	report from Vertex Detector	CEPC accelerator physics	SPPC General Progress		Coffee Break Central China Normal Univer	Muon		15:30 - 16:00
	Dark matter searches at the CEPC	The test Mr. Jian LIU setup		LATTICE Design Progress	16:00		Status Prof. Liang Li report from Nuon group	CEPC SRF system study	Proton and ion linacs
	Hall, Central China Normal University	development and sens Study of SOI pixel for the vertex detector		Bunch Filling Schemes (remote)			Status of Mr. Zien 2HU the R&D on the CEPC detector ma	CEPC SC quadrupole and sextupole designs	SS Conceptual Design
12:00	Progress Dr. Yaqing MA on quarkonium physics	Discussion on Vertex Detector CDR planning	CEPC beam-beam study and dynamic aperture study	Progress in Collimation Studies		Higgs Exotic Decays	General Dr. Gang LI status of	CEPC 650MHz high efficiency klystron study	All HTS Dr. Qingjin XU Magnets
		EPC Organizing Committee			Science Hall - Lecture Hall, Central China Normal University 17:00 Implications Dr. Lei WU of CP- violating Top-Higgs	simulation study Central China Normal	cavity R&D	Science Hall – mom 203, Central China Normal University	
13:00	1	/ertex	K				CEPC cavity Dr. Song UN with WG HOM coupler and EP	Beam Screen	
						Couplings at LHC and Higgs Factories	for the CEPC Software Tools	CEPC HOM coupler and bunch lengtening effects	
	room 301, Central China No	rmai University	Central China Normal Univer	sity 12:30 - 14:00					
14:00	Estimate the Interference effects on Higgs mass	Status report from Tracker Detector group	lattice	LHC Mr. Ye ZOU 📄 Beam Collimation (remote)					
	measurement at CEPC	Central China Normal University	CEPC Dr. Sha BAI sawtooth effect	Beam-beam effect					

	measurement at CEPC			Beam-beam effect	
		Central China Normal University	CEPC Dr. Sha BAI sawtooth effect		
	Triple gauge couplings at future hadron and lepton collider	Status and Dr. Zhi DEVG plans of TPC ASIC FEE readout	CEPC Dr. Cal MENG injector Linac beam dynamics	Collective Instabilities	
15:00	Recent progress Zhao LI of precision	Drift chamber alternative	CEPC booster injection/extraction and timing	Injection Dr. Ye YANG	
	calculations at CEPC	Discussion on Dr. 智邓 the Tracker CDR planning	CEPC injector Wei LU based on plasma based accelerator	Extraction (remote)	

Tracker

中国科学院高能物理研究所

Wuhan Workshop

Thursday parallel sessions: CDR discussions

			-									
09:00	CEPC Precision of	veak Oblique GEM ters and Weakly		CEPC injector R&	D	Discussions on future	14:00	Validation of Delphes Card for the CEPC Fast Simulation		Mr. Zhenwei CUI		
	Parameters and Weakly					SPPC energy upgrade		Central China Normal University			14:00 - 14:15	
	Interacting Dark Matt		HCAL based on		en KANG		En		imul	ation	Dr. Guangy/ TANG	
	Testing the electroweak phase transition and	THGEN a	nd Scintillator	booster low field magnet	R&D	Discussions on cryogenic temperature		Central China Normal University	Central China Normal University			
	electroweak baryogenesis at the LHC	Status of	Dr. Bing LIU					dE/dx measurement in TPC			Ms. Fenfen AN	
	and a circular electron	SDHCAL based on	RPC	seperator and power sources				Central University			14:30 - 14:45	
10:00	Testing CP-Violation in the Scalar Sector at Future e+e- Colliders	tor at calorimeter		CEPC vacuum cha R&D	amber	iber Science Hall – room 203, Central China Normal		Status and Plans of the CEPC Physics Analysis towards the CDR plus discussion			Yu BAT	
	Singlet charged scalar and CEPC			CEPC Instrument	ation	University						
				KED				Central China Normal University Coffee Break			14:45 - 15:30	
	Coffee Break							conee break				
	Central China Normal Univer	sity				10:40 - 11:00		Central China Normal University			15:30 - 16:00	
11:00	Multi-Higgs final Dr. Qi- state and new		Status of ECAL / R&D from	Dr. Zhigang WANG	e-p colli		15:00	Introduction to CEPC MDI	Dr. Sha BAI	EB Meeting		
	physics		THEP		, arru		Central China Normal University	15:00 - 16:15				
	Charged Lepton Mr.	r Violations at		R&D from USTC Central Ch		China Normal University		Introduction to CEPC Beam Background	Mr. Qinglei XIU			
	Flavor Violations at CEPC				Compatible arc Mr. F			Cockground				
	WW Threshold Discussion on Calorimeter CD planning		Olscussion on Prof. Tao HU CEPC an		nd SPPC		Discussion on MDI	Dr. Hongbo ZHU				
12:00					⊢ −	China Normal University						
				m 201, Central Compatible Dr. Yukai CHEN straight sections between CEPC and SPPC		17.00				-		
			China Normal Univ									
	implications to future coll							Central China Normal University	16:30 - 17:30	Room 201, Central China Norma	l University	
			•									

Calorimeter

MDI

Friday plenary session: CDR discussions

Joao: <u>CDR plans</u> Manqi: <u>Concepts and optimization</u>

Detector and Physics: Conceptual Design Report

- still about one year May 1, 2017: Monday, P&D meeting of work Preliminary * Decide on editors and timescale today! Establish SVN/git repository area September 30: Text for all subsections finalized Includes R&D results available until this date ***** All text committed to repository October 31: Version for internal review finalized ***** Harmonization of text across chapters * Finalize introduction and other common aspects (references, authors, etc) December 20: Version for external review ready March 1, 2018: Release to public
 - To be discussed at this meeting

CDR Organization

• Possibility I: One detector concept

- This detector needs to ''work'' at high-luminosity for Z physics
- TPC or full Silicon?
- Consider options:
 - TPC, full silicon and drift chamber
 - Particle Flow and Dual readout calorimeter

Possibility 2: Detector concepts in equal footing

- TPC-based, full silicon-based and drift-chamber detectors
- Requires manpower for full simulation in equal footing of the two concepts
- Very difficult to achieve within the timescale of 2017

• Possibility 1.5:

- Describe the two/three concepts early in the CDR (low-field/high-field)
- Detector options described in parallel in the text
- Physics performance discussed together at the end

Possible CDR outline

- I. CEPC Physics Potential
 - I. Higgs physics
 - 2. Electroweak precision physics

中国科学院高能物理研究所

- 3. Searches for physics beyond the Standard Model
- 4. Flavor physics
- 2. Experimental conditions and detector requirements
 - I. The CEPC experimental environment
 - I. Beam backgrounds, polarization, etc
 - 2. Detector requirements for e+e- physics
 - I. Track momentum and jet energy resolution, flavor tagging, particle identification
 - 3. Basic description of Detector Concepts
- 3. Vertex detectors
- 4. Tracking system
 - . Tracker concepts
 - I. The TPC tracking system
 - 2. The All-Silicon tracking system
 - 3. The Drift Chamber tracking system
 - 2. Beam induced backgrounds in tracking system
 - 3. Performance

Preliminary

Possible CDR outline

- 5. Calorimetry
 - I. Particle flow calorimeter
 - I. Hadronic calorimeter

中国科学院高能物理研究所

- 2. Electromagnetic calorimeter
- 2. Dual readout calorimeter
- 3. Calorimeter performance
- 6. Detector magnet system
- 7. Muon system
 - I. Conceptual design of muon system
 - 2. Muon reconstruction algorithm and system performance
- 8. Readout electronics and data acquisition (?)
- 9. CEPC interaction region and detector integration
- 10. Physics performance
 - I. Simulation and reconstruction
 - 2. Luminosity measurement
 - 3. Energy measurement
 - 4. Performance of low-level physics observables
 - 5. Detector benchmark processes
- II. Future plans and R&D prospects

Preliminary

CEPC Optimized Detector Parameters

Presented at Wuhan:

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->µµ) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->γγ) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL/HCAL Cell Size	5/10 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.

- To be covered at CDR
 - Include the MDI/FWD design to Full Simulation
 - Full Sim Analysis on Physics Benchmarks at this Conceptual geometry

Need similar parameter set for Low-field Detector Concept

Work towards CDR

- Need to integrate work done in **Detector subgroups** with work done by Simulation subgroup
- Decide and review final options for detector to be simulated:
 - This will be our baseline detector!
 - Deviations from "Full Simulation" should be clearly explained in the CDR
 - Need to agree upon details now, before moving with large scale CDR work

Suggestions:

- Discuss within detector groups to decide what designs should be put forward as baseline
- Common meetings between each detector subgroup and simulation subgroup to clarify details
- Decisions need to be documented in **short notes** made available for review by CEPC colleagues (these can then turn into parts of the CDR)
- Detector subgroups should provide manpower to aid on any needed improvements on digitization and geometry
- Integrate international partners in discussions. We are planning one CDR with an integrated structure

Work towards CDR

- Need outline proposals from each subgroup
- Need name proposals for contact editors of each section
 - So far, only got information from Calorimeter subgroup
 - CEPC Gitlab server:

中国科学院高能物理研究所

- http://cepcgit.ihep.ac.cn/groups/cepcdoc
- If you are not providing this today, please let me know when you will do it by
 - When will your subgroup meet to discuss this?

We will likely move to weekly meetings in the near future

Joao

中国科学院高能物理研究所

CLIC: Example of Vertex Section

4 V	ertex Detectors	83
4.1	Introduction	83
4.2	Physics Requirements	83
4.3	Simulation Layouts	84
4.4	Performance Optimisation Studies	85
4.4.1	Performance of the Baseline Configurations	86
4.4.2	Dependence on Single-Point Resolution	87
4.4.3	Dependence on Arrangement of Layers	87
4.4.4	Material Budget	89
4.5	Beam-Induced Backgrounds in the Vertex Detector Region	89
4.5.1	Beam-Pipe Layout and Design	90
4.5.2	Hit Densities in the Vertex Region	91
4.5.3	Radiation Damage	92
4.6	Integration, Assembly and Access Scenarios	92
4.6.1	Assembly and Integration	92
4.6.2	Pixel Cooling	93
4.7	Sensor and Readout-Technology R&D	95
4.7.1	Requirements of a CLIC Vertex Detector Sensor	95
4.7.2	Technology Options	95
4.7.3	Vertexing Technological Developments	96

12

中国科学院高能物理研究所

CLIC: Example of Calorimeter Section

6 Calorimetry	125
6.1 A Particle Flow Calorimeter for TeV Energies	
6.1.1 Tungsten as Absorber for the ECAL and HCAL	
6.1.2 Time Stamping Considerations	
6.1.3 Readout Technologies	
6.2 Electromagnetic Calorimeter	
6.2.1 ECAL Readout Technologies	130
6.2.2 ECAL Prototypes	130
6.2.3 ECAL Testbeam Results	131
6.3 Hadronic Calorimeter	132
6.3.1 Basic Layout	132
6.3.2 HCAL Readout Technologies for Scintillator and Gaseous Options	132
6.3.3 HCAL Test Beam Results	133
6.3.4 Tungsten Design and Engineering Studies	138
6.4 Calorimeter Performance under CLIC Conditions	138
6.4.1 ECAL Performance for High Energy Electrons	139
6.4.2 Timing Resolution	139
6.4.3 Jet Energy Resolution	
6.5 Future Calorimeter R&D for CLIC	

13

Agenda

Wednesday,	3 May 2017	
15:00 - 15:20	Introduction 20' Speaker: Joao Guimaraes Costa	•
15:20 - 15:40	MDI 20' Speaker: Dr. Hongbo ZHU (IHEP)	•
15:40 - 16:00	Vertex 20' Speakers: Prof. Qun OUYANG (IHEP), Mr. Xiangming Sun (CCNU), Prof. Meng Wang (Shandong University)	-
16:00 - 16:20	Tracker 20' Speaker: Dr. Huirong Qi (Institute of High Energy Physics, CAS)	•
16:20 - 16:40	Calo 20' Speakers: Haijun Yang (Shanghai Jiao Tong University), Prof. Tao HU (IHEP), Dr. Jianbei Liu (University of Science and Technology of China)	-
16:40 - 17:00	Muon <i>20'</i> Speaker: Prof. Liang Li (Shanghai Jiao Tong University)	-
17:00 - 17:20	Magnet 20' Speakers: Mr. Zian ZHU (高能所), Dr. Feipeng NING (高能所)	-
17:20 - 17:40	Simulation 20' Speakers: Mr. Manqi Ruan (IHEP), Dr. Gang LI (Experimental Physics Division, Institute of High Energy Physics	-

Extra Slides

Detector Pre-CDR Outline

1	Intro	oduction	1			
	1.1	The CEPC-SPPC Study Group and the Preliminary CDR	1			
	1.2	The Case for the CEPC-SPPC in China	2			
	1.3	The Science in the preCDR	2			
	1.4	The Accelerator and the Experiment	3			
2	Ove	rview of the Physics Case for CEPC-SPPC	5			
	2.1	New Colliders for a New Frontier	7			
	2.2	The Electroweak Phase Transition	18			
	2.3	Naturalness of the Electroweak Scale	27			
	2.4	Dark Matter	40			
3	Higg	as Physics at the CEPC	57			
	3.1	Introduction	57			
	3.2	2 Simulation and Reconstruction				
		3.2.1 Detector Simulation and Software Chain	59			
		3.2.2 Detector Performance	60			
	3.3	Higgs Boson Measurements	62			
		3.3.1 Production Cross Sections of Signal and Background Processes	62			
		3.3.2 $\sigma(ZH)$ and m_H Measurements	64			
		3.3.3 Production Rates of Individual Higgs Boson Decay Modes	68			
		3.3.4 Measurements of Branching Ratios	76			
		3.3.5 Measurement of Higgs Boson Width	77			
		3.3.6 Summary of the Higgs Measurements	78			

中国科学院高能物理研究所

4.94.4			
	3.4	Coupling Extractions and Combinations	80
		3.4.1 Coupling Fits	80
		3.4.2 Higgs Self-coupling	84
	3.5	Implications	86
4	Elec	troweak Precision Physics at the CEPC	97
	4.1	W, Z Measurements at the CEPC	97
		4.1.1 Z Pole Measurements	98
		4.1.2 W Mass Measurement	103
	4.2	CEPC Electroweak Oblique Parameter Fit	105
		4.2.1 The Precision Challenge for Theorists	107
		4.2.2 A General To Do List for a Successful Electroweak Program	108
	4.3	Implications for New Physics	110
		4.3.1 Natural Supersymmetry and EWPT	110
		4.3.2 Composite Higgs scenarios	113
		4.3.3 Fermionic Higgs Portal	114
5	Flav	or Physics at the CEPC	125
	5.1	Introduction	125
	5.2	Beauty and Charm Transitions	127
	5.3	Very Rare Decays	129
	5.4	CPV in $ au$ Decays and Production	130
	5.5	Charged Lepton Flavor Violation	133
	5.6	Summary	136
6	The	CEPC Detector	145
	6.1	Detector Overview	145
	6.2	Vertex Detector	148
		6.2.1 Performance Requirements and Detector Challenges	148
		6.2.2 Baseline Design	148
		6.2.3 Detector Performance	149
		6.2.4 Sensor Options	152
		6.2.5 Mechanics and Integration	154
		6.2.6 Critical R&D	155
		6.2.7 Summary	156
	6.3	Silicon Tracker	157
		6.3.1 Baseline Design	157
		6.3.2 Tracker Performance	160
		6.3.3 Critical R&D	160
	6.4	Main Tracking Detector - TPC	163
		6.4.1 Design and Challenges	163
		6.4.2 Alignment and Calibration	173
		6.4.3 Critical R&D	174
	6.5	Calorimetery System	181
		6.5.1 Electromagnetic Calorimeter	181
		6.5.2 Hadronic Calorimeter	189
	6.6	Muon System	200
		6.6.1 Baseline Design	200

Detector Pre-CDR Outline

		6.6.2 Technologies	203
		6.6.3 Future R&D	205
	6.7	Detector Magnet System	206
		6.7.1 General Design Considerations	206
		6.7.2 Solenoid Design	207
		6.7.3 Coil Manufacturing and Assembly	213
		6.7.4 Ancillaries	213
		6.7.5 Magnet Tests and Field Mapping	214
		6.7.6 Iron Yoke Design	214
		6.7.7 Future R&D	216
	6.8	Machine-Detector Interface	217
		6.8.1 Interaction Region Layout	217
		6.8.2 Detector Backgrounds	218
		6.8.3 Luminosity Instrumentation	223
		6.8.4 Mechanical Integration	224
	6.9	Detector Facilities at the Experiment Area	225
		6.9.1 General Considerations	225
		6.9.2 Underground Caverns and Access	225
		6.9.3 Surface Building and Facilities	226
		6.9.4 Safety Features	228
7	New	Physics Searches at SPPC	237
	7.1	Supersymmetry	237
	7.2	New Resonances	251
	7.3	New Phenomena of Standard Model Physics	264
	7.4	Running Electroweak Couplings as a Probe of New Physics	277
	7.5	B+L Violation at High Energies	280
	7.6	Higgs and New Physics	283
8	Futu	re Heavy-ion and Electron-Ion Collision Program	335
	8.1	Introduction	335
	8.2	QCD and Strong Interaction Matter	338
	8.3	Bulk Properties of Matter in Heavy-ion Collisions	341
	8.4	Jet Quenching in Heavy-ion Collisions	345
	8.5	Medium Nodification of Open Heavy Mesons	354
	8.6	J/ψ Production	356
	8.7	Summary	359
	8.8	Physcis Perspective at Future Electron-Proton or Electron-Ion Collido	ers 360
9	Sum	imary	381
A	Inter	national Review	383
	A.1	Report of Review of CEPC-SppC Detector preCDR	384
		A.1.1 Introduction	384
		A.1.2 Observations	384
		A.1.3 Addressing the questions in the charge	384
	A.2	R&D topics suggested by the Committee	386
	A.3	Committee members	389 7

中国科学院高能物理研究所

CLIC Detector CDR - an example

Contents

Table	of Contents	3
Execu	tive Summary	9
1 CI	JC Physics Potential	15
1.1	Introduction	15
1.2	Higgs	16
1.2.1	The Higgs Boson in the Standard Model	18
1.2.2	The Higgs Bosons of the MSSM	19
1.2.3	Higgs Bosons in other Extensions	22
1.3	Supersymmetry	23
1.3.1	CLIC potential for Heavy SUSY	25
1.3.2	Recenstructing the High-Scale Structure of the Theory	27
1.3.3	Testing the Neutralino Dark Matter Hypothesis	28
1.4	Higgs Strong Interactions	30
1.5	Z', Contact Interactions and Extra Dimensions	33
1.6	Impact of Beam Polarisation	37
1.7	Precision Measurements Potential	40
1.8	Discussion and Conclusions	42
2 CI	JC Experimental Conditions and Detector Requirements	51
2.1	The CLIC Experimental Environment	51
2.1.1	The CLIC Beam	51
2.1.2	Beam-Induced Backgrounds	52
2.1.3	Beam Polarisation at CLIC	56
2.2	Detector Requirements for e ⁺ e ⁻ Physics in the TeV Range	57
2.2.1	Trick Momentum Resolution	57
222	let Energy Resolution	58
2.2.3	Impact Parameter Resolution and Flavour Tagging	59
2.2.4	Forward Coverage	50
2.2.5	Lepton ID Requirements	50
2.2.6	Summary of Requirements for Physics Reconstruction	61
2.3	Basic Choice of Detector Concepts for CLIC	61
2.3.1	The Particle Flow Paradigm	61
2.3.2	Detector Design Considerations	62
2.4	Impact of Backgrounds on the Detector Requirements	63
2.4.1	Impact on the Vertex Detector	63
2.4.2	Impact on the Central Tracking Detector	63
2.4.3	Backgrounds in the ECAL and HCAL	64
2.4.4	Background Summany	66
	· · · · · · · · · · · · · · · · · · ·	

2.5 Timing Requirements at CLIC	6
2.5.1 Timing in Physics Reconstruction at CLJC	8
2.6 Detector Benchmark Processes	0
2.6.1 Light Higgs Production : $e^+e^- \rightarrow hv_ev_e$	0
2.62 Heavy Higgs Production	0
2.6.3 Production of Right-Handed Squarks	1
2.64 Charg no and Neurralino Pair Production	1
2.65 Slepton Production	2
2.6.6 Top Pair Production at 500 GeV	2
1 CHODING COMMENT	5
	-
	5
	5
	5
	6
3.5 Detector Parameters	0
4 Vertex Detectors \$	3
4.1 Introduction	3
4.2 Physics Requirements	3
	4
4.4 Performance Optimisation Studies	5
	6
-	7
4.4.3 Dependence on Arrangement of Layers	7
4.4.4 Material Budget	9
	9
4.5.1 Beam-Pipe Layout and Design	0
4.5.2 Hit Densities in the Vertex Region	1
4.5.3 Redation Damage	2
4.6 Integration, Assembly and Access Scenarios	2
4.6.1 Assembly and Integration	0.
4.62 Pixel Cooling	3
	5
4.7.1 Requirements of a CLIC Vertex Detector Sensor	5
4.7.2 Technology Options	5
THE FORMER FOR FORMER FOR FORMER FOR FORMER FOR FORMER FORMER FORMER FOR FORMER FOR FORMER FOR FORMER FOR FORMER FOR FOR FORMER FOR FOR FOR FOR FOR FOR FOR FOR FOR FO	
4.7.3 Vertexing Technological Developments	6
	6
5 CLIC Tracking System 10	6
5 CLIC Tracking System 10 5.1 Introduction 10	6 1
5 CLIC Tracking System 10	6 1 1

中國科學院高能物理研究所

CLIC Detector CDR - an example

5.2.2	The All-Silicon CLIC_SiD Tracking System
5.3	Beam-Induced Backgrounds in the Tracking Region
5.3.1	Occupancies in the Barrel Strip Detectors of CLIC_ILD
5.3.2	Occupancies in the Forward Strip Detectors of CLIC_ILD
5.3.3	Occupancies in the TPC
5.3.4	Radiation Damage in the Silicon Strip Detectors of CLIC_ILD
5.4	Performance
5.4.1	Tracking Performance of the TPC-based CLIC_ILD Tracking System
5.4.2	Tracking Performance of the All-Silicon CLIC_SiD Tracking System
	alarian dan 195
	alorimetry 125
6.1	A Particle Flow Calorimeter for TeV Energies
6.1.1	Tungsten as Absorber for the ECAL and HCAL
6.1.2	Time Stamping Considerations
6.1.3	Readout Technologies
6.2	Electromagnetic Calorimeter
6.2.1	ECAL Readout Technologies
6.2.2	ECAL Prototypes
6.2.3	ECAL Testbeam Results
6.3	Hadronic Calorimeter
6.3.1	Basic Layout
6.3.2	HCAL Readout Technologies for Scintillator and Gaseous Options
6.3.3	HCAL Test Beam Results
6.3.4	Tungsten Design and Engineering Studies
6.4	Calorimeter Performance under CLIC Conditions
6.4.1	ECAL Performance for High Energy Electrons
6.4.2	Timing Resolution
6.4.3	Jet Energy Resolution
6.5	Future Calorimeter R&D for CLIC
7 D	etector Magnet System 145
7.1	Introduction
7.2	The magnetic field requirements
7.3	Solenoid Coil Design
7.4	Conductor Options
7.5	Anti-Solenoid Design
7.6	The Ring Coils on the Endcap Yoke of the CLIC_ILD Detector
7.7	Magnet Services and Push-Pull Scenario
8 M	luon System at CLIC 155
8.1	Introduction
8.1.1	Muon System Requirements
0.1.1	muon o ystem requirements

8.1.2	Eackground Conditions
8.2	Conceptual Design of the Muon System
8.2.1	Muon System Layers
8.2.2	Muon Layer Design
8.3	Muon Reconstruction Algorithm and System Performance
8.3.1	Reconstruction Algorithm
8.3.2	Reconstruction Performance
9 Ve	ry Forward Calorimeters 161
9.1	Introduction
9.2	Optimisation of the Forward Region
9.3	The Luminosity Calorimeter (LumiCal)
9.3.1	Remarks on systematic uncertainties to the luminosity measurement
9.4	The Beam Calorimeter (BeamCal)
10 R.	adout Electronics and Data Acquisition System 171
10.1	Introduction
10.2	Overview of Subdetectors and their Implementation Scheme
10.2.1	Overview of Subdetectors
10.2.2	Implementation Example for a Pixel Detector
10.2.3	Implementation Example for the TPC Pad Readout
10.2.4	Implementation Example for the Analog Calorimeter Readout
10.3	Power Delivery and Power Pulsing
10.3.1	Metivation
10.3.2	Implementation of Powering Schemes for CLIC Detectors
10.3.3	Stability and Reliability Issues
10.4	DAQ Aspects
10.5	Summary
11 CI	IC Interaction Region and Detector Integration 185
11.1	Introduction
11.2	
11.2.1	Overal Dimensions and Weights
11.2.2	-
11.2.3	Services Integration
11.3	Pash Pal. Operation
11.4	Underground Experimental Area
11.5	Forward Region
11.5.1	Forward Region Layout
11.5.2	Alignment
11.5.3	QD0 Stabilisation Requirements
11.6	Detector Opening and Maintenance

PRAYERSAN AND AN EXAMPLE

241

249

12 Physics Performance	201
12.1 Simulation and Reconstruction	201
12.1.1 Event Generation	201
12.1.2 Detector Simulation	202
12.1.3 Event Reconstruction	202
12.1.4 Treatment of Background	202
12.2 Luminos:ty Spectrum	203
12.2.1 Lumnosity Spectrum Measurement using Bhabha Events	203
12.2.2 Systematic Effects due to Uncertainty of the Luminosity Spectrum	205
12.3 Performance for Lower Level Physics Observables	205
12.3.1 Particle Identification Performance	205
12.3.2 Muon and Electron Energy Resolution	206
12.3.3 JetReconstruction	208
12.3.4 Flavour Tagging	212
12.4 Detector Benchmark Processes	213
12.4.1 Light Higgs Decays to Pairs of Bottom and Charm Quarks	213
12.4.2 Light Iliggs Decay to Muons	217
12.4.3 Heavy Higgs Production	220
12.4.4 Preduction of Right-Handed Squarks	223
12.4.5 Slepton Searches	226
12.4.6 Chargino and Neutralino Production at 3 TeV	230
12.4.7 Top Pair Production at 500 GeV	234
12.5 Summary	237

13	Future	Plans and	R&D	Prospects
----	--------	-----------	-----	-----------

Summary 24				
	13.2.1	0 Engineering and Detector Integration	45	
	13.2.9			
	13.2.8	Electronics and Power Delivery	44	
	13.2.7	Calorimetry	44	
	13.2.6	TPC-based Tracking	43	
	13.2.5	Silicon Tracking	43	
	13.2.4	Vertex Detector	43	
	13.2.3	Software Development	42	
	13.2.2	Physics at CLIC	42	
	13.2.1	Simulation Studies and Detector Optimisation	41	
	13.2	Activities for the next Project Phase	41	
	13.1	Introduction	41	

A Acronyms

251

B Si	imulation and Reconstruction Parameters	255
B.1	PFO Lists at 3 TeV	255
B.2	PFO Lists at 500 GeV	257
B.3	PYTHIA Parameters	258
сс	ost Methodology for a CLIC Detector	259
C.1	Introduction	259
C.2	Scope of Detector Costing	259
C.3	Guiding Principles	259
C.4	Relative Distribution of Cost among the Main Detector Components	260
C.5	Cost Sensitivity Analysis	261

Appendix

International Collaboration

• INFN, Italy

• Possible new detector components

中国科学院高能物理研究所

- Full tracker concept, drift chamber tracker, dual readout calorimeter, muon detector
- Electroweak physics studies

Taiwan Collaboration

- Interested in software and physics studies (https://indico.cern.ch/event/579684/overview)
 - Lumical, EW measurements (Sinica), Jet energy scale studies (NCU) and ECAL Studies (Taiwan U)

• Vinca Institute, Belgrade, Serbia

• MOU signed with IHEP

• University of Chicago, USA

- Young Kee-Kim
 - Chicago/Beijing Workshop, June 5-17 (tentative)

Monash University, Australia

- Tong Li (李佟)
- University of Liverpool, UK
 - Yanyan Gao, Lecturer
- Others,
 - Barcelona, Iowa State, Univ. of Geneva, SLAC, Weizmann Institute, Mainz U

Chicago/Beijing Workshop

• Date: June 5-17 (tentative)

- Visiting graduate students (~6) from Chicago University
- Fulvio Piccinini (INFN theorist) expert in electroweak physics
- Will invite Lian Tao (Chicago)
- Explore physics issues that can be tackled in 2 weeks!
 - Needs careful preparation
 - Fast simulation using Delphes card
- Finish with I-day workshop at Chicago/Beijing Center with students presenting their results