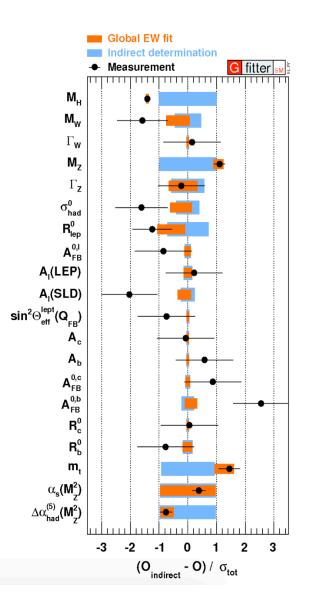


China CMS group visit

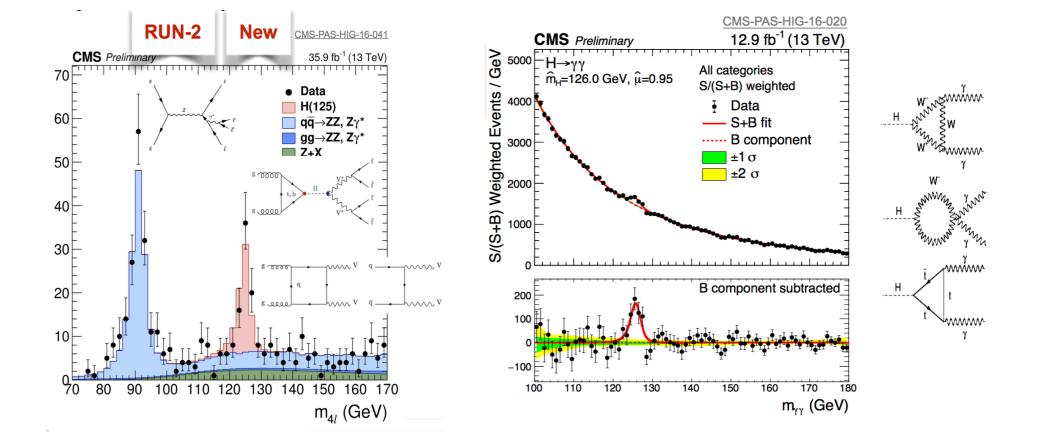
April 26, 2017

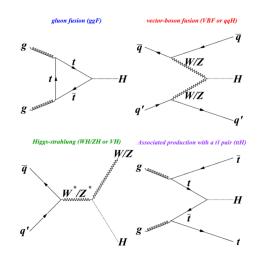
Basics: $\gamma\gamma$ collider based on e^-e^-

General plan for this talk:


- What have we learn from the LHC and other experiments?
- Where are the opportunities to search for physics beyond the standard model?
- How they compare with $\gamma\gamma$ colliders?
 - Low energy machines $2m_{\tau} < E_{\gamma\gamma} < 2m_{b}$
 - Higgs factories $E_{\gamma\gamma} < m_h$
- Other details of alternative machines like e-e-, e- γ and $\gamma\gamma$?

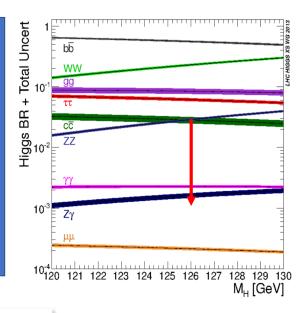
LHC Data making clear the need for future machines

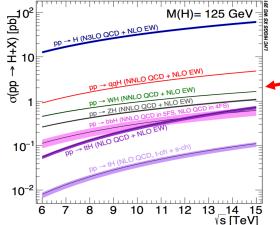

- Discovered the Higgs Boson @125 GeV
- Excluded Physics Beyond the Standard Model (PBSM) at relatively low masses:

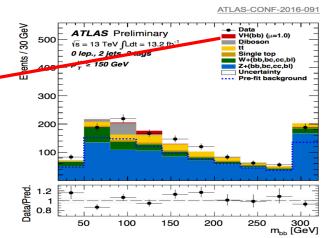

< few TeV in many models

Need to include Precision
 Electroweak measurements to
 have sensitivity to PBSM not
 accessible direct at the LHC

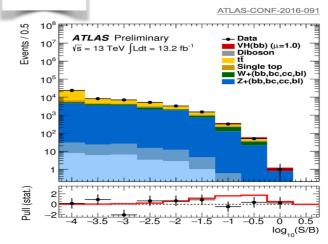
Higgs Boson discovered in 2012 at the LHC using 8 TeV data and is still there at 13 TeV ③

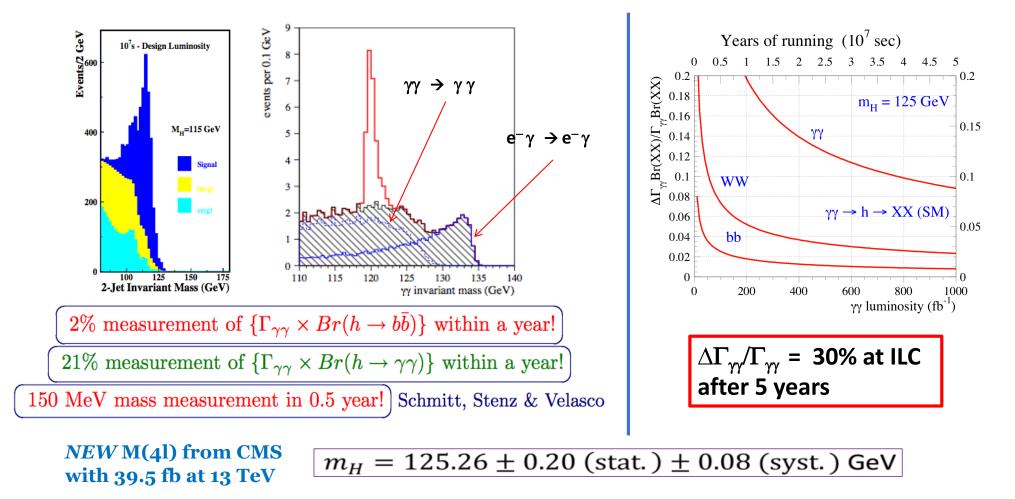




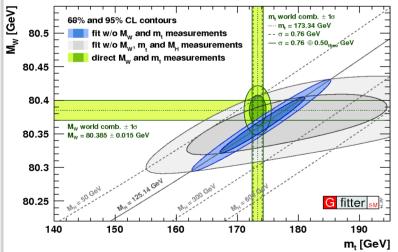

- @LHC the Higgs is better detected in rare decays like $\gamma\gamma$ and ZZ \rightarrow 4L
 - Reflecting the power of Signal/Power

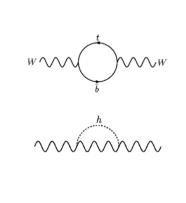
 \bullet

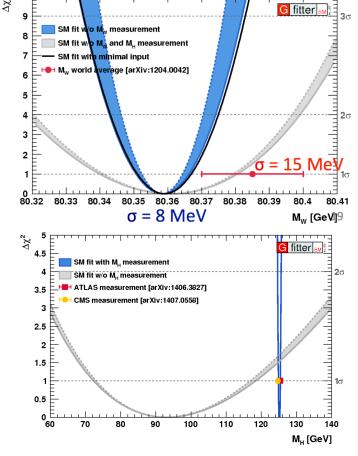

- Sensitivity of Higgs to fermions (g_F) comes from the gg to H production and dominated by the top quark
- See example for H to bb → we need to do this elsewhere like @γγC



RUN-2

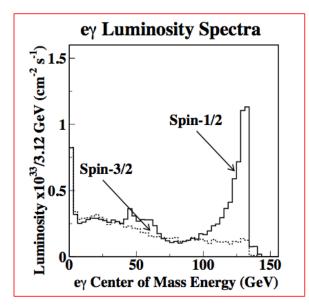

H to bb & $\gamma\gamma$ at a $\gamma\gamma$ collider after 1 & 5 years

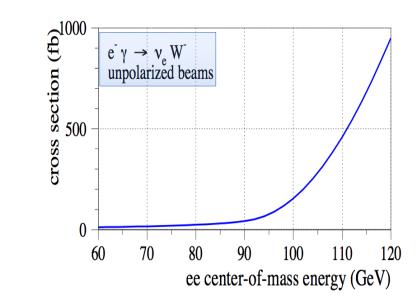



Putting things in perspective... Should we work hard to get the Higgs mass more precise

Of course if it comes for free we take it

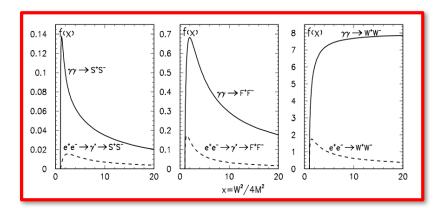
M_H measurements/predictions before and after discovery... conclusion work on W-mass

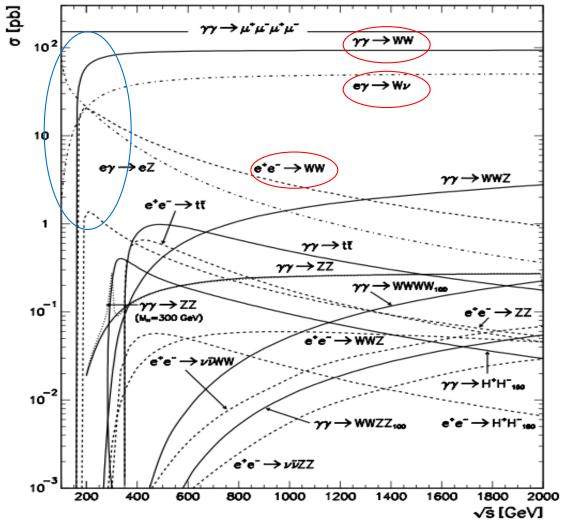




- Combination of precise measurements of m_W , m_{top} , m_H provides critical test of SM if $\sigma(m_W) \lesssim 6$ MeV
- Huge challenge at LHC
- Recent ATLAS result: $\sigma(m_W) = 19 \text{ MeV}$
- m_w measurement is the bottleneck, where the experimental uncertainty is worse than the theoretical one
 - \rightarrow We need to do this elsewhere like @ $\gamma\gamma$ C or e+e-

M_W and Γ_W from $e^-\gamma \rightarrow W^-\nu$ (e+e- needs to run at the WW threshold)

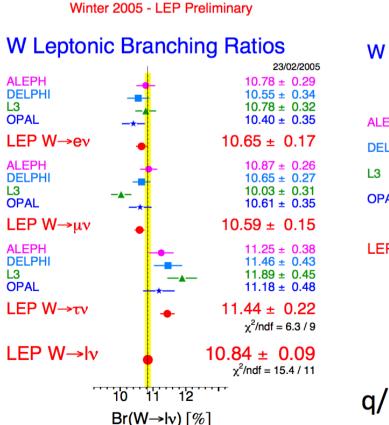

Mass measurement from W \rightarrow hadron events scan <u>can provide a error < 5 MeV</u>

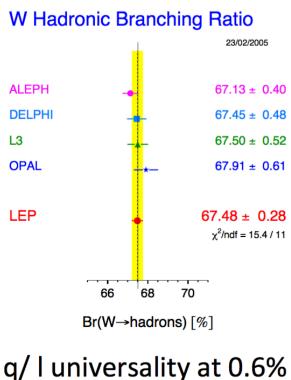


$$e^-\gamma \rightarrow W^-\nu$$

 $\gamma \gamma \rightarrow W^+W^-$
 $e^+e^- \rightarrow W^+W^-$

Mass measurement and width might be better to work at WW thresholds




Comment: Interests in W branching fraction to improve tests of lepton universality

Lepton
universality
tested at
1% level

- τ BR ~2.7 σ larger than e/ μ

How well could we measure the ratio of BR of the W at the LHC including the tau?

Winter 2005 - LEP Preliminary

How to get widths of Higgs: $\Gamma_{total} \& \Gamma_{\gamma\gamma}$ at $\gamma\gamma$ collider ?

• The event rate of
$$\gamma\gamma \rightarrow h \rightarrow b\bar{b}$$
 is proportional to:
• The event rate of $\gamma\gamma \rightarrow h \rightarrow b\bar{b}$ is proportional to:
• $\Gamma(h^0 \rightarrow \gamma\gamma) \times BR(h^0 \rightarrow b\bar{b})$
Therefore with $BR(h^0 \rightarrow b\bar{b})$ from elsewhere we can get
 $\Gamma(h^0 \rightarrow \gamma\gamma)$
• Similarly,
• Similarly,
• $\Gamma_{\text{total}} = \frac{\{\Gamma_{\gamma\gamma} \times \mathcal{B}r(H \rightarrow \bar{b}b)\}}{\{\mathcal{B}r(H \rightarrow \gamma\gamma)\} \times \{\mathcal{B}r(H \rightarrow \bar{b}b)\}}$

Therefore combining $b\bar{b}$ and $\gamma\gamma$ modes will give us Γ_{Total} in a model independent way.

%10 Measurement of Γ_{Total}

The discovery of Higgs Boson has created as many questions as it has answer

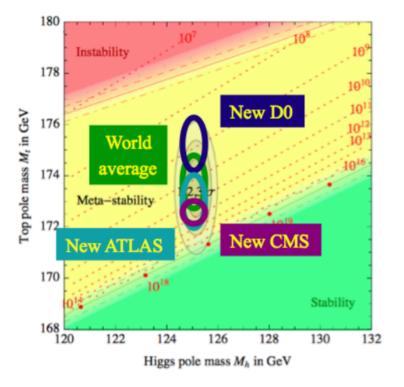
- 1. Higgs boson mass (M_H) & decay width ($\Gamma_{\rm H}$)
- 2. Higgs boson quantum numbers J^{PC} and tensor structure
- 3. Higgs couplings to gauge bosons (g_V) and fermions (g_F)
- 4. Higgs potential Higgs self-coupling (λ)

The Standard Model Lagrangian - Higgs sector

 $\mathcal{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} - \left(\left(y_{ij}H\bar{\psi}_{i}\psi_{j} + \text{h.c.}\right)\right)$

 $m_H = \sqrt{2}\mu = \sqrt{\lambda}v$ (v = vacuum expectation value, 246 GeV)

Are (1)-(3) measured precise enough @ LHC to be sensitive the relevant PBSM?

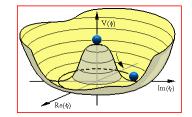

K. Cranmer

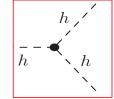
(4) What is the exact shape of the Higgs potential?

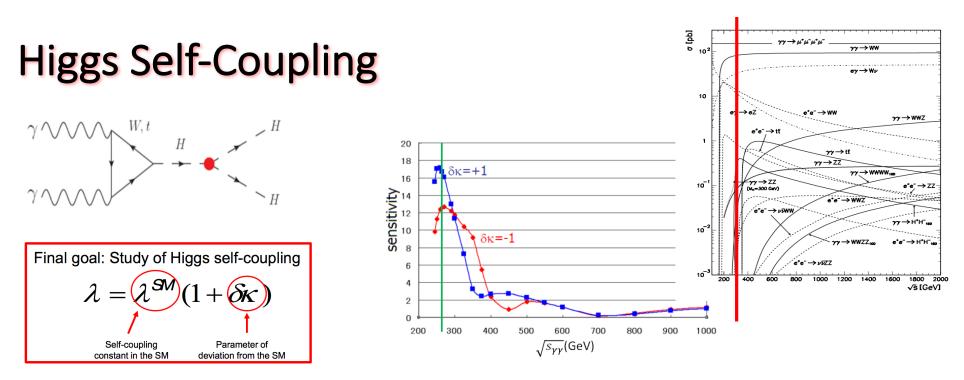
Already signs from new physics in the Higgs data by comparing M_{top} with M_H due to the shape of the Higgs potential?

- Dashed lines: Calculation of the regions of the (m_H, m_{top}) plane where the electroweak vacuum is stable, metastable or unstable, and yields the following estimate of the "tipping point" Λ_{μ} , where λ goes negative
- The final result is an estimate:
 - $\log_{10} (\Lambda_{|} / \text{GeV}) = 9.4 \pm 1.1$

indicating to some experts that we are (probably) doomed, unless some new physics intervenes.


Higher center of mass

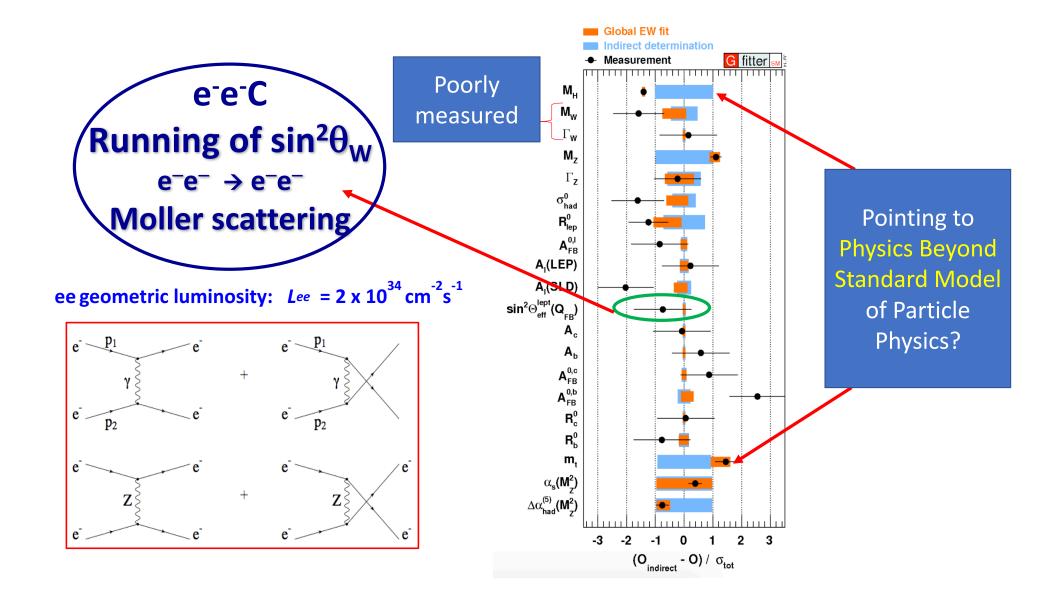

- Upgrade: Increase energy of the e- beam from 80 GeV to 150 GeV to measure Higgs self coupling
- The Higgs self couplings measurements one of key topics for the future -- ILC (30%) and LHC (20%) cannot do the full job:
 - only way to reconstruct the Higgs potential:


$$V_{H} = \mu^{2} \Phi^{+} \Phi + \eta (\Phi^{+} \Phi)^{2} \rightarrow \frac{1}{2} m_{H}^{2} h^{2} + \sqrt{\frac{\eta}{2}} m_{H} h^{3} + \frac{\eta}{4} h^{4} \text{ with } :$$

$$m_{H}^{2} = \eta v^{2} / 2 \text{ and } v^{2} = -\mu^{2} / \eta$$

¹Presented by Tor Raubenheimer ICFA Higgs Factory Workshop November 14th, 2012

$$\lambda_{SM} = \sqrt{\frac{\eta}{2}} m_{H}$$

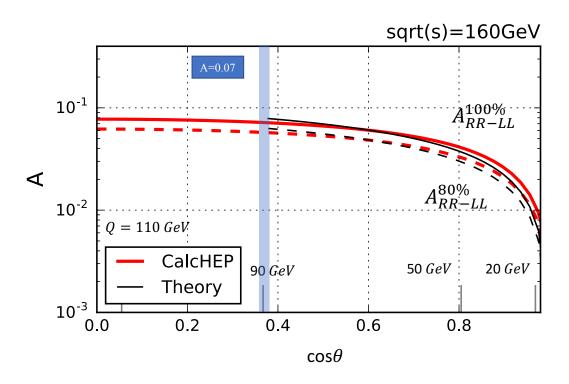


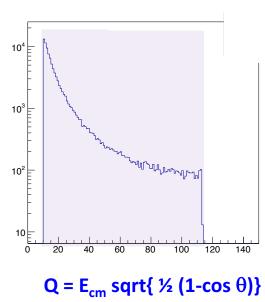
A $\gamma\gamma$ Collider with a center of mass around 300 GeV and ILC characteristics, will produce 80 events in bbbb channel for a 120 GeV Higgs Possible to suppress background and have large significance

after 5 years of data taking

S.Kawada.. et.al, Phys. Rev. D 85, 113009 (2012)

$$S_{loteal} = \frac{N_{Sg}}{\sqrt{N_{total}}} = 4.9$$

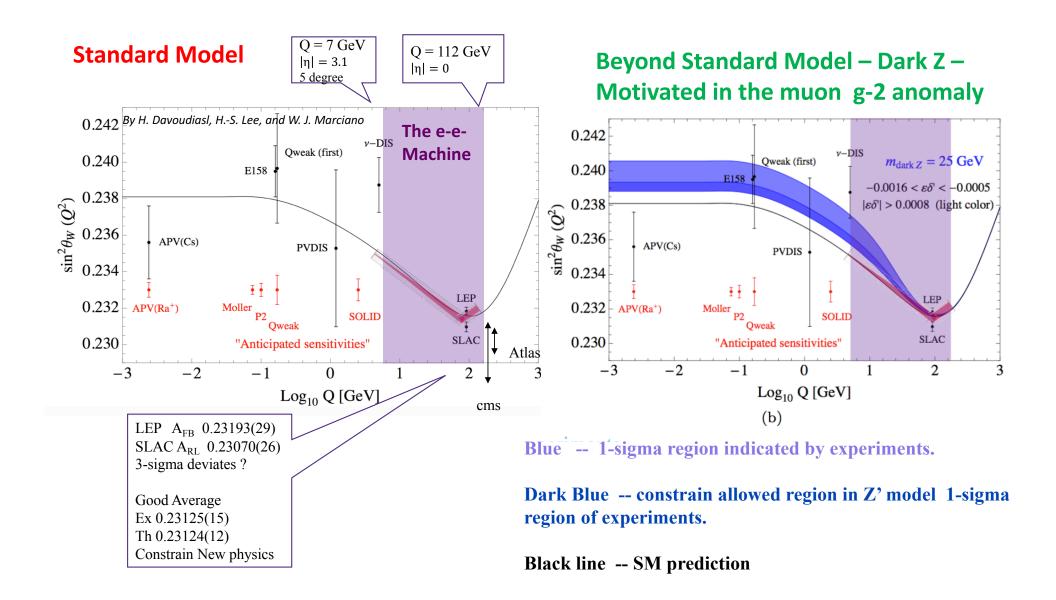


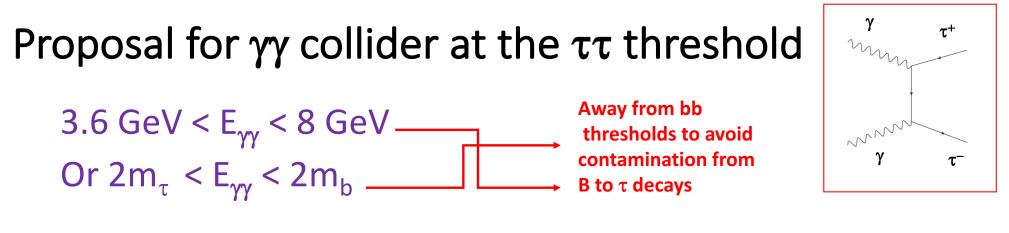

V-A structure of weak interaction gives rise to L-R parity violation in Moller scattering

$$\begin{aligned}
\mathcal{L} &= eA_{\mu}\bar{\psi}\gamma^{\mu}\psi - gZ_{\mu}\bar{\psi}\gamma^{\mu}(c_{V} + c_{A}\gamma_{5})\psi \\
\frac{d\sigma}{dcos\theta} &= \frac{2\pi\alpha^{2}}{s} \times \\
A_{RR-LL} & \begin{bmatrix} \sigma_{RR} & \frac{I \sqrt{F} & RR & RL & LR & LL}{q^{2}} + \beta\frac{4s^{3}}{u^{2}t^{2}} + \beta\frac{4s^{3}}{u^{2}}c_{RR} & 0 & 0 & 0 \\
RL & 0 & \frac{u^{2}}{t^{2}} - \beta\frac{2u^{2}}{t}c_{RL} & \frac{t^{2}}{t^{2}} - \beta\frac{2t^{2}}{u}c_{Rl} & 0 \\
LR & 0 & \frac{t^{2}}{t^{2}} - \beta\frac{2t^{2}}{u}c_{RL} & \frac{t^{2}}{t^{2}} - \beta\frac{2t^{2}}{u}c_{Rl} & 0 \\
\frac{s^{4}}{u^{2}t^{2}} + \beta\frac{4s^{3}}{ut}c_{LL} & 0 & 0 & 0 \\
\end{bmatrix}$$

By measuring the L-R parity violation in Moller scattering, one can precisely measure the electroweak mixing angle $sin^2(\theta_W)$

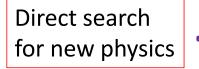
$$A_{R-L} = \frac{d\sigma_R - d\sigma_L}{d\sigma_R + d\sigma_L} = \frac{s}{\sqrt{2}\pi} \frac{G_F}{\alpha} \cdot \left[\frac{s^2 ut}{u^4 + t^4 + s^4}\right] \cdot (4sin^2\theta_W - 1)$$
$$A_{RR-LL} = \frac{\sigma_{RR} - \sigma_{LL}}{\sigma_{RR} + \sigma_{LL}} = \frac{sG_F}{\sqrt{2}\pi\alpha} \left[\frac{ut}{s^2}\right] (4sin^2\theta_W - 1)$$




 θ = scattering angle

Scattering angle > 5 degree

 $\sigma_{RR+LL}=1.2 imes10^7~{
m fb}$ $\sigma_{RR-LL}^{80\%}=4.8 imes10^4~{
m fb}$ $\sigma_{RR-LL}=8.0 imes10^4~{
m fb}$



Physics in low energy γγC: g-2 of the tau lepton a few more things...

Indirect search for new physics

- 1. First precise measurement of the g-2 of the τ (a_{τ})
 - $\tau \tau \gamma$ vertex
- 2. Improve g-2 of the μ (a_µ) *
 - Hadronic decays of the τ like τ to $v_{\tau}\pi^{\pm}\pi^{0}$

3. Search for lepton flavor violation (i.e. τ → μγ, μμμ, etc.) *
4. Search for CP and T -Violation in τ measured from dipole moment and rate, angular and polarization asymmetries from τ decays
* Topics part of the Intensity Frontier program in the USA

QED: Electromagnetic and Weak Dipole Moments

• Electromagnetic coupling of spin-1/2 charged lepton to the virtual photon involves 3 form factors:

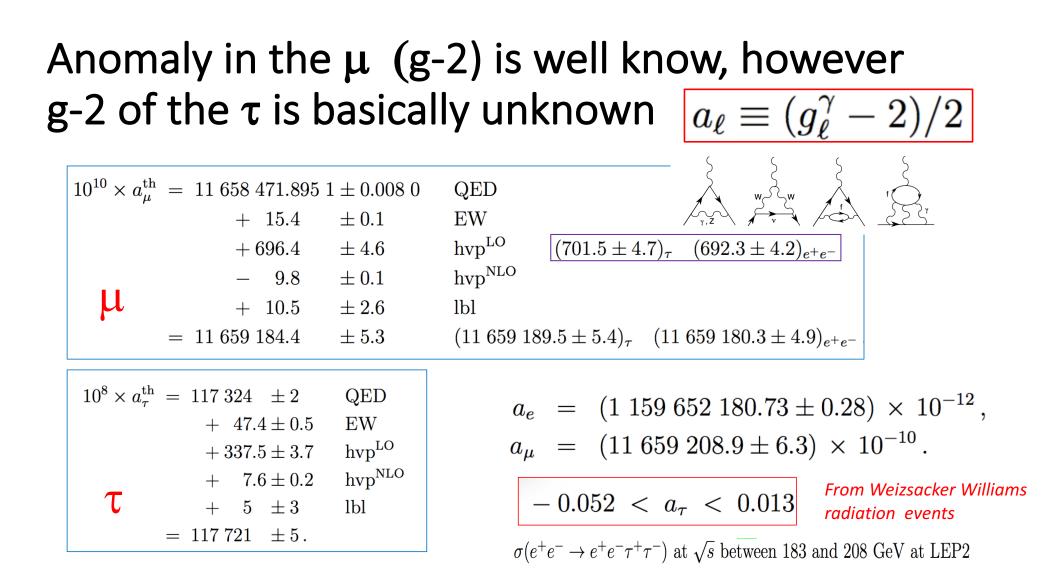
$$\mathcal{M}_{\ell\bar{\ell}\gamma^*} = e \, Q_\ell \, \varepsilon_\mu(q) \, \bar{u}_\ell(\vec{p}\,') \left[F_1(q^2) \, \gamma^\mu + i \, \frac{F_2(q^2)}{2m_\ell} \, \sigma^{\mu\nu} q_\nu + \frac{F_3(q^2)}{2m_\ell} \, \sigma^{\mu\nu} \gamma_5 \, q_\nu \right] u_\ell(\vec{p})$$

$$F_1(0) = 1$$

$$\mu_\ell \equiv \frac{e}{2m_\ell} \, \frac{g_\ell^\gamma}{2} = \frac{e}{2m_\ell} \, [1 + F_2(0)]$$

$$d_\ell^\gamma = \frac{e}{2m_\ell} \, F_3(0)$$

$$Dipole$$


$$moment$$

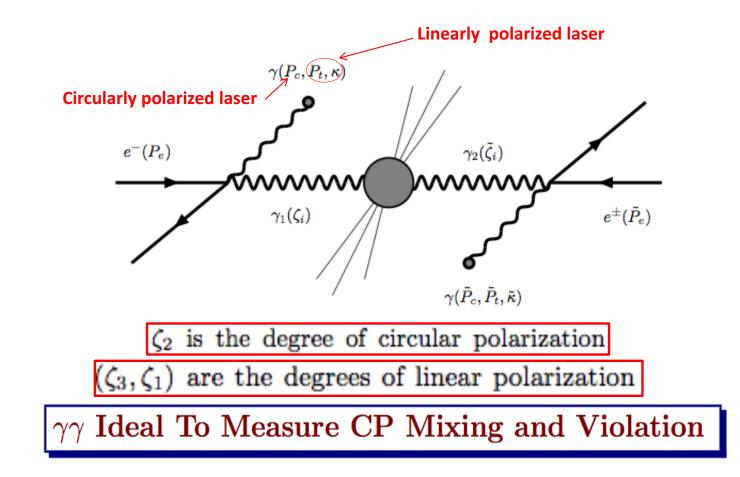
$$Dipole$$

$$moment$$

- $F_i(q^2)$ sensitive to a possible lepton substructure
- d^{γ} good probe of CP $% ^{\gamma}$ and T violation
- ➔ Polarization useful for these measurement

The τ anomalous magnetic and dipole moment have an enhanced sensitivity to new physics because of the large τ mass

Last comments on yyC


What is special really about $\gamma\gamma$ C?

 Unique role in understanding CP structure due to the possibility of having linearly polarized beams that allow us to have:

• Well defined CP-states, with *linearly*
$$(\lambda = 0)$$
 polarized γ 's
 $\Rightarrow (\gamma_{\parallel} \parallel \gamma_{\parallel}) \Rightarrow CP$ -even
 $\Rightarrow (\gamma_{\parallel} \perp \gamma_{\parallel}) \Rightarrow CP$ -odd

We are still searching for the source of matter anti-matter asymmetry observed for visible matter in our universe; →therefore looking for new sources of CP is crucial !

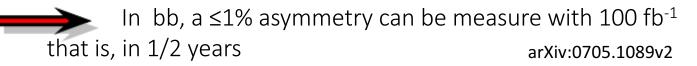
$\gamma\gamma$ C Higgs-factory to Study CP Violation in Detail

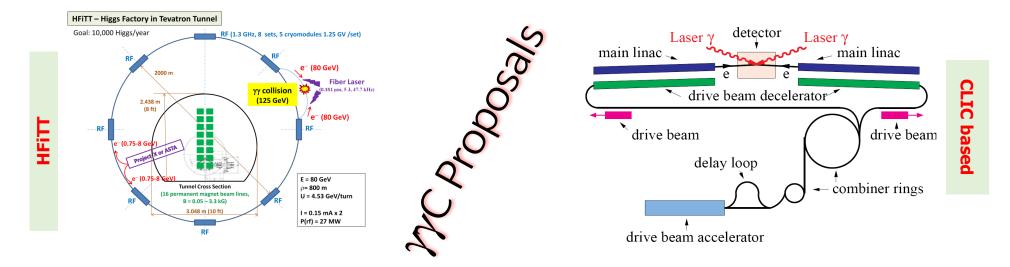
 (ζ_3, ζ_1) are the degrees of linear polarization

 ζ_2 is the degree of circular polarization

Only

with $\gamma\gamma$

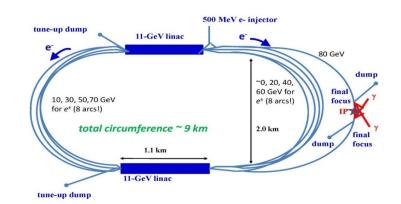

In s-channel production of Higgs:

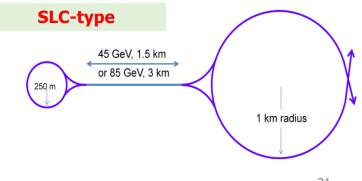

$$\overline{\left|\mathcal{M}^{H_{i}}\right|^{2}} = \overline{\left|\mathcal{M}^{H_{i}}\right|^{2}_{0}} \left\{ \left[1 + \zeta_{2}\tilde{\zeta}_{2}\right] + \mathcal{A}_{1}\left[\zeta_{2} + \tilde{\zeta}_{2}\right] + \mathcal{A}_{2}\left[\zeta_{1}\tilde{\zeta}_{3} + \zeta_{3}\tilde{\zeta}_{1}\right] - \mathcal{A}_{3}\left[\zeta_{1}\tilde{\zeta}_{1} - \zeta_{3}\tilde{\zeta}_{3}\right] \right\}$$

== 0 if CP is conserved
$$= +1 (-1) \text{ for CP is conserved for}$$

$$A CP-Even (CP-Odd) \text{ Higgs}$$

If $\mathcal{A}_1 \neq 0$, $\mathcal{A}_2 \neq 0$ and/or $|\mathcal{A}_3| < 1$, the Higgs is a mixture of CP-Even and CP-Odd states


Possible to search for CP violation in


 $\gamma\gamma \rightarrow$ H \rightarrow fermions without having to measure their polarization

\rightarrow 3 machines in 1: e⁻e⁻, e⁻ γ , $\gamma \gamma$

31

Designs that will produce $\geq 10K$ Higgs/year (10⁷s)

Parameter	HFITT	Sapphire	SILC	CLICHE
cms e-e- Energy	160 GeV	160 GeV	160 GeV	160 Gev
Peak γγ Energy	126 GeV	128 GeV	130 GeV	128 GeV
Bunch charge	2e10	1e10	5e10	4e9
Bunches/train	1	1	1000	1690
Rep. rate	47.7 kHz	200 kHz	10 Hz	100 Hz
Power per beam	12.2 MW	25 MW	7 MW	9.6 MW
L_ee	3.2e34	2e34	1e34	4e34
L_gg (Εγγ > 0.6 Ecms)	5e33	3.5e33	2e33	3.5e33
CP from IP	1.2 mm	1 mm	4 mm	1 mm
Laser pulse energy	5 J	4 J	1.2 J	2 J
Total electric power< = 100 MW γ_{laser} : In all designs a laser pulses				

of a several *Joules* with a λ ~350nm (3.53 eV) for E_{e-} ~ 80 GeV

35-50 fb⁻¹s⁻¹

Summary Plenty of fun ahead of us...