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Second-order process of the weak 
interaction in the Standard Model  very 

long half-life (T1/2 ∼ 1019 ÷ 1021 yr) 

Conserves lepton number 

(A,Z+1) 

Observable when the (much faster) single-β decay is forbidden by 
energy conservation (e.g. in even-even nuclei) 

Experimentaly seen in many nuclei (82Se, 100Mo, 48Ca, 76Ge, ...) 

Described for the first 
time by M. Goeppert-

Mayer (1935), based on 
the Fermi theory 



Neutrinoless double beta decay 
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Violates lepton 
number 

conservation: ΔL=2 

−++→ eZAZA 2)2,(),(

Forbidden in the SM  new physics (massive Majorana ν)  

1/τ  = G(Q,Z) |Mnucl|2  <mee>2 
0νββ 

Decay 
rate 

Phase space 
(~Q5) 

Nuclear matrix 
element 

Majorana neutrino mass 
(coherent sum) 

|Σi Uei
2 mi | 

If leading mechanism = exchange of massive Majorana ν: 
Explore Dirac/Majorana nature of neutrino and absolute mass scale 

Very rare process: T1/2 > 1025-26 yr   < 1 event/(ton yr)  
requires unprecedented low-background conditions! 
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Experimental 
signature of 0ν2β:  

line in the energy 
spectrum, at the 
Qββ-value of the 

decay 

Neutrino-accompained  decay 
 continuous spectrum 

Other key signatures that can be exploited in experiments:  

- mono-energetic event due to electrons, rather than γ (different 
topology: e- are more localized) 

- event having two particles, with characteristic distributions in energy 
and angle ( shed light on the mechanism which generates 0ν2β) 



Adapted from R.G. H. 
Robertson. 
 arXiv: 1301.1323 

Many 0ν2β candidates… 
• Many different 

candidate isotopes 
available 
• no clear "golden 

candidate"  
• Similar specific rates 

(within a factor of two) 
• 76Ge important also for 

historical reasons 
• Choice on practical 

grounds 
• “Easy” enrichment 
• Energy resolution 
• T1/2 of 2ν decay 
• Scalability/modularity 
• Cost 
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Exposures of many 10's of kg·yr achieved with 76Ge, 130Te, 100Mo and 
136Xe   next round is scale up to 100's kg·yr 

g A
4  



Why 76Ge ? 
• HPGe technology: commercial, reliable, well-known 

• Going to be a big "material screening" experiment 
• Very good (radio)purity 

• Excellent energy resolution (< 4 keV FWHM at Qββ) 
• No background from the 2ν2β decay 

• Source = detector 
• Handles for background suppression 

• Anti-coincidence, pulse shape discrimination 
• Low-background tecniques available 

• Also drawbacks 
• Qββ relatively low, 2039 keV  

• below the 2614 keV line from 208Tl (the highest-energy from environmental 
radioactivity)  sensitive to γ-induced background 

• Low isotopic abundance (7.8%) 
• Needs (expensive) enrichment: 50 $/g 
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GERDA experiment at LNGS 
The GERmanium Detector 
Array experiment searches 

for 0ν2β decay in 76Ge 
using HPGe detectors 

enriched in 76Ge 

Hosted in the Hall A of the 
Gran Sasso Laboratory, 

INFN 

GERDA @ LNGS, Italy 

38
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Suppression of µ-flux > 106 
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GERDA: the Collaboration 
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ITEP 
Moscow 

Kurchatov  
Institute 

16 institutions 
~100 members 

http://www.mpi-hd.mpg.de/gerda/ 
INR 
Moscow 



GERDA concept 
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LAr  

• Concept: graded 
low-Z shielding 
(water, LAr) against 
external radiation 

• LAr serves as cooling 
medium and active 
(passive) shielding  

• Material selection for 
radiopurity, minimum 
amount of material 
close to the detectors 

• Advanced analysis 
(PSD) 
 

Eur. Phys. J. C 73 (2013) 2330 



Goals and phases 

• Cao 
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Phase I: 
Completed (Nov 2011-May 
2013) 
Use refurbished HdM and IGEX 
(18 kg) (+new Phase II 
detectors, deployed Jun 2012) 
B ≈ 0.01 cts / (keV kg yr) 
No LAr readout (passive shield) 
Accumulated 21 kg yr 
Main purpose: test the KK claim 

claim 

Phase II: 
Add new enrGe detectors (20 kg) 
BI ≈ 0.001 cts / (keV kg yr) 
Goal: 100 kg yr 
Started on December 2015 
First data release on Jun 2016 
(about 11 kg yr) 
Background assessment  
Data taking ongoing (> 30 kg yr) 



The main actors: HPGe detectors 
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8 diodes (from HdM, IGEX) 
• Enriched 86% in 76Ge 
• Total mass 17.7 kg 
• Reprocessed by Canberra 
• Resolution in LAr ~2.5 keV 

FWHM at 1333 keV  

30 new Phase II detectors 
(custom-made) 
• BEGe type (allow for 

better PSD) 
• Total mass: 20.0 kg 
• Enriched 86% in 76Ge 
• Better resolution (~1.8 keV) 
• 5 detectors from the first 

production batch used in 
Phase I 

Detectors arranged 
in strings and 

deployed in LAr 

Eur. Phys. J. C 73 (2013) 2330 
Eur. Phys. J. C 75 (2015) 39 
 



Background reduction tools  

• Anti-coincidence with the muon veto  
• Anti-coincidence between detectors (cuts MSE) 
• Active veto using LAr scintillation (implemented in Phase II) 
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Signal Backgrounds 

ββ 

Ge 

Point-like (single-site) energy 
deposition inside one HP-Ge diode 

Multi-site energy deposition 
inside HP-Ge diode (Compton 
scattering), or surface events 

γ 
α/β 
 

LAr scintillation 
light (128 nm) 



• Anti-coincidence with the muon veto  
• Anti-coincidence between detectors (cuts MSE) 
• Active veto using LAr scintillation (implemented in Phase II) 
• Pulse shape discrimination (PSD) 

• MSE within one detector and surface events 
• Very efficient for the BEGe detectors 

• Accept >90% of SSE, while rejecting 90% of MSE and surface events 
• Less efficient with coaxial detectors, but still doable (acc: 90%/ suppr: 50%) 
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Eur. Phys. J. C 73 (2013) 2583 

current 

time [ns] 

ββ decay 
ACCEPT 

γ ray background 
REJECT REJECT 

42K β, U/Th chain α's 

Peculiar pulses 

A 

A 



A QUICK SUMMARY OF 
PHASE I 



The GERDA datasets 
• Total exposure: 21.6 kg yr (diodes) between Nov 9th, 2011 and 

May 21st, 2013 (492.3 live days, 88.1% duty factor) 
• 5% due to  temperature-related instabilities of electronics 
• Five Phase II BEGe detectors deployed in June 2012 

• Data are not "homogeneous" throughout the entire data taking 
• Higher background observed for the coaxial detectors for ~20 days after 

the deployment of BEGes (silver dataset). All the rest: golden dataset 
• BEGe detectors have better energy resolution than coaxials 

 
• Analysis strategy: 

• All data are taken, but not summed up (separate analysis) 
• Maximizes information, avoids "worse data" to spoil better ones 
• Three datasets used ("golden coax", "silver coax", "BEGes"), with 

independent backgrounds and resolutions 
• Blind analysis (new in the field of 0ν2β search) 

• Events in a 40 keV range around Qββ (energy & waveforms) are not made 
available for the analysis  

• Develop and validate the background model and the PSD cuts before the 
unblinding (all parameters frozen prior to unblinding) 
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EPJ. C 74 (2014) 2764 



The energy spectrum 
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• Low-energy dominated by the β spectrum of 39Ar (Qβ = 565 keV). 
Coaxial detectors show surface α (210Po) 

• Most intense γ-line: 1525 keV from 42K (and 1460 keV from 40K) 
• Only a few more γ-lines detected with statistical significance (214Pb/214Bi, 

208Tl, 228Ac) 



Identification of background components 
• Contributors at Qββ (for coax):  

• γ emitters (close): 214Bi, 208Tl  (2/3) 
• surface contaminations: 42K, and α 

(1/3) 
• α contamination from 210Po 

• 210Po decaying away (T1/2=138 d) 
• Large differences among detectors  
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• The  model predicts a flat 
background around Qββ  

• No intense γ-lines expected 
around the Qββ  

 spectra can be fitted with a 
flat background apart from 
lines 2104 keV and 2119 keV 

EPJ. C 74 (2014) 2764 



After the unblinding… the spectra 
• Sum spectrum, 21.6 kg·yr 

• Note: Real analysis uses the three dataset spectra separately 
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Without 
PSD 

With PSD 

2204 keV from 214Bi 
 
~ 18 cts w/o PSD  
   0.83 cts/(kg·yr) 
~ 9 cts w/ PSD 
 

HdM w/o PSD [1]: 
(8.1±0.5) cts/(kg·yr) 

[1] O. Chkvorets, Ph.D. thesis, 2008 

Phys. Rev. Lett. 111 (2013) 122503 



The analysis 
• Baseline analysis with a frequentist approach (profile likelihood) 

• Maximum likelihood spectral fit (3 datasets, common 1/T1/2) 
• Bayesian version also available 
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Gerda only 
Best fit: N0ν = 0 
N0ν < 3.5 cts @ 90% C.L. 
T1/2

0ν > 2.1 x 1025 yr @ 90% CL 
MC Median sensitivity (for no signal): 
T1/2

0ν > 2.4 x 1025 yr @ 90% C.L. 
 
 
GERDA+HdM [1] +IGEX [2] 
Best fit: N0ν = 0 
T1/2

0ν > 3.0 x 1025 yr @ 90% CL 
[1] Eur. Phys. J. A 12, 147 (2001) 
[2] Phys. Rev. D 65, 092007 (2002), 
Phys. Rev. D 70 078302 (2004) 
 

Phys. Rev. Lett. 111 (2013) 122503 



Ge energy reconstruction: ZAC filter 
• Development of a new filter for energy reconstruction 

• "Zero Area Cusp" (ZAC) 
• Better handling of low- and high-frequency noise than the Gaussian filter  

 
 
 
 
 
 
 

• Meant to replace the Gaussian filter 
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digitized input trace 
digital filter constants 
zero area cusp (ZAC) 

convoluted trace 
max = uncalibrated energy 

in 

total filter 

out 

• Phase I: average FWHM coax detectors 
4.8 keV 4.25 keV at Qββ 

Eur. Phys. J. C 75 (2015) 255 



GERDA PHASE II 



• Target: push T1/2 sensitivity into the 1026 yr range 
• Increase exposure : 20 kg yr  100 kg yr 
• Reduce background 10-2  10-3 counts/(keV kg yr) 
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• Mass increase: +30 enriched 
BEGe detectors (~ 20 kg) 
• produced by Canberra Olen and 

completely tested at Hades 
(Belgium) 

• first BEGe sample already tested in 
the data chain of the Phase I 

• x10 background reduction 
• PSD with the BEGe's  
• Liquid argon veto 

instrumentation to detect 
scintillation light 

• New lower mass holders and 
contacting solution (wire bonding) 

Phase II 

Transition to Phase II (2013-2015) 
 



Liquid Argon veto of Phase II 
• Hybrid system to detect LAr scintillation light 

• Curtain of scintillating fibers (800m fibers coated with wave-
length-shifter), 90 SiPMs (grouped x6) 

• 3"-PMTs on the top and on the bottom of the array (9+7) 
• Nylon mini-shroud around each string coated with wave-

length-shifting 
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∅ 47 cm 

100 cm 

• Parameters 
optimized for each 
channel: 
• 0.5 phe threshold 
• 5-6 µs anti-

coincidence window 



Phase II Array 
• Deployed in December 2015 
• 40 channels 

• 30 enrBEGe (20 kg) 
• 7 enrCoax (16 kg) 
• 3 natCoax (8 kg) 
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36 kg 

All channels working 



Phase II data taking – first release 
• Data taking between 

Dec 25th, 2015 and 
Jun 1st, 2016 (130.7 
live days)  

• 82.0% duty factor 
• Blinding applied at 

Qββ ± 25 keV 
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• Usable for analysis 10.8 kg⋅yr  
• 5.8 kg⋅yr BEGe and 5.0 kg⋅yr coax, plus 2.8 kg⋅yr natGe 
• About 0.4 kg⋅yr of BEGe data not considered due to poor PSD 

• Additional unpublished data from Phase I (1.9 kg⋅yr) 
• Taken after the freezing of the Phase I release dataset (Jul-Sep 2013) 
• Still blinded since 2013 

 



Energy scale and stability 
• DAQ facts: 

• 14 bit, 25 MHz continuous running 
ADC (160 µs) 

• Leading edge of the pulse 
sampled at 100 MHz (10 µs) 

• Trigger threshold ~40 keV 
• Energy scale 

• Offline, using optimized ZAC filter  
• Calibrations with 228Th source 

every 1-2 weeks 
• Position of the 2614 keV line from 

208Tl between successive 
calibrations stable (∆ < 1 keV) 

• Stability monitored online with 
Test Pulses, injected every 20 s 
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Energy resolution 
• Resolution profile derived from 228Th calibrations 
• Correction applied derived from the resolution of the 40K and 

42K peaks in the physics data 
• Accounts for instabilities during the long-term data taking 

• Data with unreliable energy scale not considered for analysis 
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Anticipated resolution at Qββ=2039 keV 
Coax 

3.8 keV 
FWHM 

BEGe 
3.2 keV 
FWHM 



Phase II (raw) energy spectrum 

• Only a few γ-lines observed (40K, 42K) 
• Consistent with Phase I 

• Coax detectors have higher α rate 
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BEGe, 5.8 kg⋅yr 

Coax, 5.0 kg⋅yr 



Background modeling 

• Very same approach as in Phase I 
• Mostly, same components 

considered 
• Fit range 570-5300 keV 

• Results for 228Th and 226Ra 
consistent with screening results 

• Use the same analysis window as 
Phase I 
• 1930-2190 keV, excl. ±5 keV around 

two known γ lines 
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BEGe 
p-value: 0.6  

Coax 
p-value: 0.3 

EPJ. C 74 (2014) 2764 



PSD for BEGe detectors 
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Eur. Phys. J. C 73 (2013) 2583 

0ν2β accepted 

Degraded α 

Multi-site events 

Acceptance for 0ν2β 
events: (87 ± 2)% 

• Estimated from 208Tl DEP 
• Double-check at low energy 

with 2ν2β events (LAr cut) 

• A/E: single parameter 
• Amplitude of Current/Amplitude 

of Charge Pulse 
• Event-per-event selection 

• Above band: events on p+ 
electrode (e.g. α's from 210Po) 

• Below band: events on n+ 
electrode, multiple scattering 



PSD for coaxial detectors 
• PSD for coax detectors less effective 

than for BEGes 
• Artificial neural network (ANN), as in 

Phase I 
• Trained on signal (SSE) :  208Tl (2614 

keV) DEP at 1592 keV  
• Background (MSE): 212Bi @ 1620 keV γ-

line 
• Acceptance for 0ν2β events: (85±5)%   

• Double check with Compton edge and 2ν2β 
• MC simulation of waveforms 

• New ingredient: dedicated ANN for α 
• Test/train sample from data 
• Acceptance for 0ν2β events: (93±1)% 

• Combined acceptance (79±5)%  
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Eur. Phys. J. C 73 (2013) 2583 

current pulses for SSE 



LAr performance with physics data 
• LAr readout only when there is a trigger in Ge 

• Dead time 2.3% 
• Very different suppression for the γ-rays of 

40K (EC) and 42K (β-decay) 
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Survival fraction between 
0.6 and 1.3 MeV: 

 (70.4 ± 0.3)% 
• T1/2(2ν2β) fixed as 1.92 

1021 yr (Phase I) 
• 40K and 42K continua 

completely suppressed 
 

40K (EC) 
no energy in LAr 

42K (β-)  
β in LAr 

Only 2ν2β left 



Putting all together: BEGe (5.8 kg⋅yr) 

• PSD clears completely the α region 
• LAr and PSD orthogonal 

IHEP, Beijing, 17 May 2017 41 

BI= 2⋅10-2 cts/(keV kg yr) 

BI= 5⋅10-3 cts/(keV kg yr) 

BI= ∼10-3 cts/(keV kg yr) 



Putting all together: coaxials (5.0 kg⋅yr) 

• PSD less effective than for BEGe 
• New α-ANN critical to remove events in the α region 
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BI= 3⋅10-3 cts/(keV kg yr) 

BI= 2⋅10-2 cts/(keV kg yr) 

BI= 10-2 cts/(keV kg yr) 



Unblinding at Ringberg castle  
GERDA collaboration 
meeting at Ringberg 

17 June 2016: unblinding of 
± 25 keV around Qββ 
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A closer look at Qββ : the unblinding 
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BEGe  
(5.8 kg⋅yr) 

Coax  
(5.0 kg⋅yr) 

Closest event to Qββ 
(21 keV away!) 

Qββ 



Event counts 
BEGe (5.8 kg ⋅ yr) Coax (5.0 kg ⋅ yr) 

Before unblinding 1930-2190 keV (190 
keV) 

1 3 

Expected after unblinding Qββ±25 keV 0.3 0.78 
Expected after unblinding 1930-2190 
keV, excl. Qββ (230 keV) 

1.2 3.6 

Observed after unblinding Qββ±25 keV 0 1 
Observed after unblinding 1930-2190 
keV, excl. Qββ  (240 keV) 

1 4 
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7+11
-5 ⋅10-4 35+21

-15 ⋅10-4 Background (counts/keV kg yr) 

BEGe (5.8 kg ⋅ yr) Coax (5.0 kg ⋅ yr) 
Before unblinding 1930-2190 keV (190 
keV) 

1 3 

Expected after unblinding Qββ±25 keV 0.3 0.78 
Expected after unblinding 1930-2190 
keV, excl. Qββ (230 keV) 

1.2 3.6 

Exposure FWHM 
(keV) 

Bck counts in 
Qββ± 0.5 FWHM 

BEGE ∼50 kg yr 3.0 0.10 
Coax ∼50 kg yr 4.0 0.70 

Projection to the design Phase II exposure (100 kg yr) 

Less than 1 
background count 
expected in the full 

exposure 



• First experiment in the field which is 
basically background-free for the entire 
design exposure  
• Nature 544 (2017) 47 

• BI/ε = 3.5 counts/(ROI ton yr) [BEGe] 
• ROI: ± 0.5 FWHM 

• World record (!) 
• Phase I: 80 counts/(ROI ton yr) [Coax] 
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Some traffic of news and press releases 
IHEP, Beijing, 17 May 2017 47 



Combined analysis – the datasets 
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(incl. extra runs) 

PRL 111 (2013) 
122503, but for 

ZAC energy 
reconstruction 

and revised εPSD 

34.3 

Nature 544 
(2017) 47 



Combined analysis – statistical analysis 
• Combined unbinned maximum likelihood fit of the six 

spectra 
• Independent constant terms plus common signal Gauss(Qββ,σE) 
• Free parameters: six backgrounds, 1/T1/2  (T1/2  constrained to be >0) 

• Fit, same strategy as for Phase I: two sets of praescriptions 
• Frequentist: test statistics and method after Cowan et al., EPJC 71 

(2011) 1554 
• Bayesian: flat prior on 1/T1/2 between 0 and 10-24 yr-1 

• Systematic uncertainties on ε  and resolution folded as pull 
terms (frequentist) or by Monte Carlo (Bayesian) 
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Nature 544 
(2017) 47 
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Frequentist 
Best fit: N0ν = 0 
N0ν < 2.1 cts @ 90% C.L. 
T1/2

0ν > 5.3⋅1025 yr @ 90% CL 
MC Median sensitivity (for no signal): 
T1/2

0ν > 4.0⋅1025 yr @ 90% C.L. 

Bayesian 
Best fit: N0ν = 0 
T1/2

0ν > 3.5⋅1025 yr @ 90% CI 
MC Median sensitivity (for no signal): 
T1/2

0ν > 3.1⋅1025 yr @ 90% C.I. 

T1/2=5.3⋅1025 yr  

Statistical analysis Nature 544 
(2017) 47 



Current data taking… 
• Data taking in progress!  

• Phase II exposure increased by x3 
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Phase IIa 

XVII Neutel 2017 
(March 2017) 

28.5 kg∙yr  
(Blinding in Qββ± 

25 keV) 
 
 

Neutrino 2016 
10.8 kg∙yr  

(First unblinding) 
Nature 544 (2017) 

47 



Spectra and background index 

• Background performance confirmed (1930  2190 keV)  
• Smaller statistical uncertainty for BEGe 
• Even a little bit improved for Coax  
• Mix unblinded/blinded ROI 
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preliminary 

7+11
-5   6+6

-4 ⋅10-4 

(counts/keV kg yr) 
35+21

-15  22+11
-8 ⋅10-4 

2 cts 

6 cts 



Next steps • Phase I (21 kg yr) 
• Sensitivity: 2.4·1025 yr  
• Limit: T1/2

0ν  > 2.1·1025 yr (90%CL) 
• PRL 111 (2013) 122503 

• Phase IIa (PhI + 10.8 kg yr) 
• Sensitivity: 4.0·1025 yr  
• Limit: T1/2

0ν  > 5.3·1025 yr (90%CL) 
• Nature 544 (2017) 47 

• In the bag: >25 kg yr more of 
Phase II data (background-free) 
• Open the blinding box in July 2017 

(TAUP2017), sensitivity ∼8.0·1025 yr 
• Break the 1026 yr wall 

(sensitivity) in early 2018 
• Design exposure 100 kg yr 

• Background-free 
• Final sensitivity 1.4⋅1026 yr 
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Conclusions and perspectives 
• 0ν2β decay actively searched for by many experiments worldwide 
• GERDA experiment at LNGS 

• Phase I completed (2011-2013), 21.6 kg·yr of exposure, blind analysis, 
T0ν

1/2 > 2.1⋅1025 yr @ 90% CL 
• Phase II ongoing (stable data taking!) since December 2015 

• Deployed enrGe mass doubled 
• Validated background suppression tools (LAr and PSD) 

• First results, with 34.4 kg⋅yr total (10.8 kg⋅yr Phase II) 
• T0ν

1/2 > 5.3⋅1025 yr @ 90% CL (median sensitivity: 4.0⋅1025 yr ) 
• Lowest background in ROI ever achieved, Nature 544 (2017) 47 

• > 25 kg yr of Phase II data already available 
• Blind analysis in Qββ± 25 keV. Box to be opened in the summer 
• Very good background performance confirmed, < 1 count/(keV ton yr) 

• Plan to accumulate 100 kg⋅yr within 3 years 
• Expected to be background free 
• Break the wall of 1026 yr (median sensitivity) in 2018 
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BACKUP 
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GERDA Phase I data taking 
• Total exposure: 21.6 kg yr (diodes) between Nov 9th, 2011 and May 21st, 

2013 (492.3 live days, 88.1% duty factor) 
• 5% due to  temperature-related instabilities of electronics 

• Used for analysis: 6 enrGe coaxial detectors (4 from HdM + 2 from IGEX) 
• Data from two other deployed detectors not used in analysis because of high LC  
• Usable mass: 14.62 kg  
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• Five Phase II BEGe 
detectors deployed in 
June 2012 
• One detector showed 

instabilities 
• Extra 3.0 kg  

• Stability monitored by 
• Weekly calibrations 

with 228Th 
• Test pulses (0.05 Hz) 

Deployment 
of BEGes 



Physics observables 

• The calculation of mee  from T1/2 requires the knowledge of 
the nuclear matrix element 
• Complex theoretical calculations, and not so many groups working on 

it worldwide 
• Different approaches (flavours of QRPA, Shell Model, etc.) can differ by 

a factor of 2-10  
• Systematic uncertainty on  mee   difficult to compare 

experiments carried out with different nuclei 
• It is important to have many experiments running: if the effect is 

observed, needs confirmation by at least two isotopes 
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1/T1/2  = G(Q,Z) |Mnucl|2  <mee>2 
Measured 
quantity 

Quantity of 
physical interest 



The events 
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Expected from 
background only 

3.3 
0.8 
1.0 

2.0 
0.4 
0.1 

Phys. Rev. Lett. 111 (2013) 122503 



56Co calibration and position of the DEPs 
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• Residuals with respect to tabulated energies typically less 
than 0.3 keV 
• One outlier at 0.6 keV, but in a energy rerion "overcrowded" by 

peaks ( fitting systematic?) 
• The energy scale holds up to > 4 MeV (could not be checked with 

228Th)  

• DEPs 
reconstructed 
at the proper 
energy 
• Kinematically 

similar to the 
DBD 

• No hints of 
ballistic deficit 



Background modeling - 2 
• Background in the ROI (before LAr and PSD) 

• α from 210Po and 222Rn daughters 
• β from 42K 
• γ from 214Bi and 208Tl 

• Flat background expected at Qββ 
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• Use the same 
analysis window as 
Phase I 

• 1930-2190 keV, 
excl. ±5 keV 
around two known 
γ lines 
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