Dual readout calorimetry: how does it work and why does it matter Michele Cascella

- Principles of calorimetry
 - em showers
 - had showers
 - compensation
- dual readout calorimetry
 - principles
 - results
- prospectives

Why calorimeters?

- Calorimeter are the heart of modern collider detectors
 - Energy, flow and topology (jets, ET^{miss})
 - Fast (trigger)
 - Resolution improves with energy
- They can also be a thorn in the side
 - Jet energy scale
 - Non linearity

Sampling vs homogeneous

- Homogeneous calorimeters
 - great resolution
 - impractical for hadrons
- Sampling calorimeters
 - sampling fraction (f_{samp})
 - sampling frequency

Electromagnetic showers

- $E_c = E(t_{max}) = E_0/2^{tmax}$
- $t_{max} \sim ln(E_0)$
- E ~ N

Hadronic showers

- mip + strong interaction
- $\eta_0, \pi_0 \rightarrow \text{em showers}$
- neutrons
- invisible energy

ŵ

A simple model?

- η[±],η⁰, π[±], π⁰ P(em)=1/3
- $f_{em} = 1/3 + 2/3 \times 1/3 + 5/9 \times 1/3 \dots = 1 (1 1/3)^n$
- Does not work
- f_{em} non poissonian
- π signal < e signal

protons highly ionising

neutrons (invisible)

Hadronic shower composition

	Lead	Iron
Ionization by pions	1 9%	21%
Ionization by protons	37%	53%
Total ionization	56%	74%
Nuclear binding energy loss	32%	16%
Target recoil	2%	5%
Total invisible energy	34%	21%
Kinetic energy evaporation neutrons	1 0%	5%
per GeV of non-em energy		
Number of charged pions	0.77	1.4
Number of protons	3.5	8
Number of cascade neutrons	5.4	5
Number of evaporation neutrons	31.5	5
Total number of neutrons	36.9	10
Neutrons/protons	10.5/1	1.3/1

Compensation

- e = response to electronic component
- h = response to hadronic component
- e=h compensating calorimeter

Resolution of hadronic calorimeters

- Same issues that affect em showers
 - Invisible energy
 - Non poissonian fluctuations in the em shower fraction, f_{em}

• Dominating effect in most hadron calorimeters (e/h≠1)

Non linearity

- Non compensation → non linearity
- Offline compensation can distort jet energy scale

L

Compensating calorimeters

- You can tune e/h by
 - reducing the sampling fraction (e↓ but σ [↑])
 - hydrogen in active material (h¹ but Texas towers)
- Only works for specific integration time

Dual Readout calorimetry

Compensation with dual readout

- Measure the same shower twice, with two different calorimeters

$$egin{aligned} egin{aligned} egi$$

e.g. If
$$e/h = 1.3$$
 (S), 4.7 (Q)

$$\frac{Q}{S} = \frac{f_{\rm em} + 0.21 (1 - f_{\rm em})}{f_{\rm em} + 0.77 (1 - f_{\rm em})}$$

$$E = \frac{S - \chi Q}{1 - \chi}$$

with $\chi = \frac{1 - (h/e)_S}{1 - (h/e)_Q}$

Selection by fem

- Each "slice" of f_{em} has a
 better
 resolution
- knowledge of f_{em} enables
 event-by event
 compensation

Construction

The detector

2 Cu modules

Pb 3*3 matrix

The test beam

Leakage counters

Electromagnetic performcance

- Combination of S and C channel improves em resolution
- Stochastic term dominates

Hadronic performance

Fadronic resolution

ŵ

- Good linearity
- Resolution to be improved

Limits to resolution

- The Pb matrix resolution is mainly limited by the lateral leakage
- Resolution almost doubles for well contained events

h

Final hadronic performance

- Larger detector required for full containment
- Simulation suggest large improvement

Rotation method

Rotation method

P can be found by fitting the data with a straight line

Rotation results

- Caveat, this only works for ensembles of particles
- "Jet" resolution still impacted by detector size

Particle identification

99.8 % electron ID, 0.2 % pion mis-ID

Time structure 10010000 80 Events per bin 60 40 20 $\lambda_{att} = 8.9 \text{ m}$ 1000 0 0.2 0.80 0.5 1.5 2.01.0 () Depth inside calorimeter (m) *Depth inside calorimeter (m)*

- Delay of the PMT signal correlated with shower starting position
- Correct for light attenuation in fibres.
- No longitudinal segmentation required (easier calibration)

Future perspectives

The neutron fraction

- Waiting for the neutron to be absorbed takes too long
- Elastic scattering of n on H in plastic fibres (exponential signal with τ~20ns)
- We cal the relative size of this tail $f_{\mbox{\scriptsize n}}$
- f_n is complementary to fem, could be used to further improve the had resolution

<u>m</u>

New readout

- The end of the fibre forest
- Longitudinal segmentation

Test modules

- 2 small copper modules (10x10 fibers) 1x1x100cm³
- Still large enough to reasonably contain an electromagnetic shower

SiPM readout

- Coupled to a 8x8 SiPM matrix (HAMAMATSU 25/50um)
- Characterisation

SiPM results

Scintillation

Cherenkov

(S fibres removed)

 Non linearity due to SiPM response saturation and cross talk

14000

12000

10000

8000

6000

4000

2000

• Residual non linearity is possibly due to leakage

Cherenkov

3000

- Double readout board to physically separate S and C
- Improved readout electronics

4п detector

- DREAM born as a detector independent R&D
- Effort to simulate a 4π geometry undergoing

Hadronic W/Z separation

- Most common figure of merit for next collider calorimetry
- The first Geant4 simulations suggest it's possible

W/Z separation (high-precision GEANT4)

Conclusions

- A simple but powerful approach to hadronic calorimetry
- Experimental evidence and simulations prove an unparalleled hadronic resolution
- Ongoing activity to integrate in detector proposal

Thank you

Questions?

Electromagnetic showers

- Molière radius
 ρ_M ~ A/Z
- 50% energy deposit isotropic

Response

ZEUS results on low-energy hadronic nonlinearity

- $e/\pi \neq e/h \neq 1$
- e/π depends
 on energy

Rotation method interpretation

Calorimeter resolution

Length and width

- t~ln(E)
- but leakage goes down with energy (f_{em} increases)

<u>m</u>

