Weak Decays of Charmed Baryons

Fu-Sheng Yu (于福升) Lanzhou University

2017.06.21 @ UCAS

Thank Prof. Zheng and Prof. Lyu for the invitation!

In collaboration with Cai-Ping Jia, Hua-Yu Jiang, Di Wang

Outline

- 1.SU(3) analysis
- **2.** Prediction on $\mathcal{Z}_c^+ \rightarrow pK^-\pi^+$
- 3. Lambda_c^+ -> p KS/KL
- 4. Final-State Interacting effects.

More discussions than conclusions

Charmed baryon physics was a desert

During last decades, no data and no theories

Now we see some plants by BESIII

More discoveries are expected

Difficulties in theory

- It is always difficult to understand the dynamics of charm decays, due to large non-perturbative contributions
- Heavy quark effective theory does not work for 1/mc
- Topological diagrammatic approach works well in D decays. ΔA_{CP} was predicted to be (-0.06 ~ -0.19)% in 2012 [Li, Lu, FSY, PRD86,036012], and confirmed by recent LHCb measurements.
- But it does not work in charmed baryon decays so far, due to less data to fix parameters.

B(Λ⁺_c →
$$p\eta$$
) = (1.24 ± 0.28 ± 0.10)×10⁻³
B(Λ⁺_c → $p\pi^{0}$) < 2.7×10⁻⁴

1. SU(3) analysis

[C.D. Lu, W. Wang, FSY, PRD16'][C.P. Jia, FSY, in progress]

SU(3) symmetry

- Powerful in prediction
- To be tested

$$\mathcal{B}(\Lambda_c \to ne^+\nu_e) = \frac{3}{2} \frac{|V_{cd}|^2}{|V_{cs}|^2} \mathcal{B}(\Lambda_c \to \Lambda e^+\nu_e)$$

$$\mathcal{B}(\Lambda_c \to \Lambda e^+\nu_e)_{\text{BESIII}} = (3.65 \pm 0.38 \pm 0.20)\%$$

 $\mathcal{B}(\Lambda_c \to ne^+\nu_e)_{SU(3)} = (2.93 \pm 0.34) \times 10^{-3}$

[C.D. Lu, W. Wang, FSY, PRD16']

SU(3) symmetry

- Powerful in prediction
- To be tested

[C.D. Lu, W. Wang, FSY, PRD16']

$$\sqrt{2}\mathcal{A}(\Lambda_c \to p\overline{K}^0\pi^0) + \mathcal{A}(\Lambda_c \to p\overline{K}^-\pi^+) + \mathcal{A}(\Lambda_c \to n\overline{K}^0\pi^+) = 0$$

[BESIII, PRL118,112001(2017)]

Systematic SU(3) Analysis

 $(c\overline{s})(d\overline{u}) = \mathcal{O}_6 + \mathcal{O}_{\overline{15}} \qquad \qquad \mathcal{O}_6 = \frac{1}{2}[(c\overline{s})(d\overline{u}) - (c\overline{u})(d\overline{s})] \\ \mathcal{O}_{\overline{15}} = \frac{1}{2}[(c\overline{s})(d\overline{u}) + (c\overline{u})(d\overline{s})]$

$$\begin{split} H_{eff} = & aH^a_{bc}(\overline{15})T^b\overline{B}^c_dM^d_a + bH^a_{bc}(\overline{15})T^bM^c_d\overline{B}^d_a + cH^a_{bc}(\overline{15})\overline{B}^b_dM^c_aT^d \\ &+ dH^a_{bc}(\overline{15})M^b_d\overline{B}^c_aT^d + eH^{ab}(6)T_{ac}\overline{B}^c_dM^d_b + fH^{ab}(6)T_{ac}M^c_d\overline{B}^d_b \\ &+ gH^{ab}(6)\overline{B}^c_aM^d_bT_{cd} \end{split}$$

$$T^a = (\Xi_{c1}^0, -\Xi_{c1}^+, \Lambda_c^+)$$

 $B_b^a = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda^0 + \frac{1}{\sqrt{2}}\Sigma^0 & \Sigma^+ & p \\ \Sigma^- & \frac{1}{\sqrt{6}}\Lambda^0 - \frac{1}{\sqrt{2}}\Sigma^0 & n \\ \Xi^- & \Xi^0 & -\sqrt{2/3}\Lambda^0 \end{pmatrix} \qquad M_b^a = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\sqrt{2/3}\eta \end{pmatrix}$

Cabibbo-favored processes

Process	Squared matrix element	Process	Squared matrix element
$\Lambda_c^+\to\Lambda^0\pi^+$	$rac{1}{6}\left a+b-2c-2e-2f-2g ight ^{2}$	$\Lambda_c^+\to \Sigma^0\pi^+$	$rac{1}{2}\left a-b-2e+2f+2g ight ^{2}$
$\Lambda_c^+\to \Sigma^+\pi^0$	$\frac{1}{2}\left -a+b+2e-2f-2g\right ^2$	$\Lambda_c^+\to \Sigma^+\eta^0$	$rac{1}{6}\left a+b-2d-2e-2f+2g ight ^2$
$\Lambda_c^+ \to P\overline{K}^0$	$\left a+c-2e\right ^2$	$\Lambda_c^+\to \Xi^0 K^+$	$\left b+d-2f ight ^2$
$\Xi_c^0\to \Xi^-\pi^+$	$\left a+c+2e\right ^2$	$\Xi_c^0\to \Xi^0\pi^0$	$\tfrac{1}{2}\left -a+d-2e+2g\right ^2$
$\Xi_c^0\to \Xi^0\eta^0$	$\frac{1}{6}\left a-2b+d+2e-4f-2g\right ^{2}$	$\Xi_c^0\to \Lambda^0 \overline{K}^0$	$\frac{1}{6}\left -2a+b+c-4e+2f+2g\right ^2$
$\Xi_c^0\to \Sigma^+ K^-$	$\left b+d+2f ight ^2$	$\Xi_c^0\to \Sigma^0 \overline{K}^0$	$rac{1}{2}\left -b+c-2f-2g ight ^2$
$\Xi_c^+\to \Xi^0\pi^+$	$\left -c-d-2g ight ^2$	$\Xi_c^+\to \Sigma^+ \overline{K}^0$	$rac{1}{2}\left -c-d+2g ight ^2$
$\Lambda_c^+\to \Sigma^{*+}\pi^0$	$rac{1}{6}\left -2lpha+eta-2\gamma-\delta ight ^2$	$\Lambda_c^+\to \Sigma^{*+}\eta^0$	$rac{1}{18}\left 2lpha-eta-2\gamma-3\delta ight ^2$
$\Lambda_c^+\to \Sigma^{*0}\pi^+$	$rac{1}{6}\left -2lpha+eta-2\gamma-\delta ight ^2$	$\Lambda_c^+\to \Delta^{++}K^-$	$ eta+\delta ^2$
$\Lambda_c^+\to \Delta^+ \overline{K}^0$	$rac{1}{3}\left eta+\delta ight ^2$	$\Lambda_c^+\to \Xi^{*0}K^+$	$rac{1}{3}\left eta-2\gamma-\delta ight ^2$
$\Xi_c^+ \to \Sigma^{*+} \overline{K}^0$	$rac{4}{3}\left lpha ight ^2$	$\Xi_c^+\to \Xi^{*0}\pi^+$	$rac{4}{3}\left lpha ight ^2$
$\Xi_c^0\to \Sigma^{*0}\overline{K}^0$	$rac{1}{6}\left 2lpha-eta+2\gamma-\delta ight ^2$	$\Xi_c^0\to \Xi^{*0}\pi^0$	$rac{1}{6}\left 2lpha-eta+\delta ight ^2$
$\Xi_c^0\to \Xi^{*0}\eta^0$	$\tfrac{1}{18}\left -2\alpha+\beta-4\gamma+3\delta\right ^2$	$\Xi_c^0\to \Sigma^{*+}K^-$	$rac{1}{3}\left -eta+2\gamma-\delta ight ^2$
$\Xi_c^0\to \Xi^{*-}\pi^+$	$rac{1}{3}\left -eta+\delta ight ^2$	$\Xi_c^0\to \Omega^- K^+$	$ -eta+\delta ^2$

Singly Cabibbo-suppressed processes

Process	Squared matrix $element(mods_1^2)$	Process	Squared matrix $element(mods_1^2)$
$\Lambda_c^+\to\Lambda^0 K^+$	$\frac{1}{6}\left -a+2b+2c+3d+2e-4f+2g\right ^2$	$\Lambda_c^+\to \Sigma^0 K^+$	$rac{1}{2}\left -a-d+2e-2g ight ^2$
$\Lambda_c^+\to \Sigma^+ K^0$	$ -a+d+2e-2g ^2$	$\Lambda_c^+ o p\eta^0$	$rac{1}{6}\left 2a-b+3c+2d-4e+2f-2g ight ^{2}$
$\Lambda_c^+ \to p \pi^0$	$rac{1}{2}\left -b-c+2f+2g ight ^2$	$\Lambda_c^+ \to n\pi^+$	$\left -b+c+2f+2g ight ^2$
$\Xi_c^0\to \Sigma^-\pi^+$	$\left a+c+2e ight ^2$	$\Xi_c^0\to\Lambda^0\pi^0$	$\tfrac{1}{12}\left -a-b-c+3d-2e-2f+4g\right ^2$
$\Xi_c^0\to \Sigma^0\pi^0$	$rac{1}{4}\left a+b-c-d+2e+2f ight ^{2}$	$\Xi_c^0\to\Lambda^0\eta^0$	$rac{1}{4}\left -a-b+c+d-2e-2f ight ^2$
$\Xi_c^0\to \Sigma^0\eta^0$	$rac{1}{12}\left -a-b+3c-d-2e-2f-4g ight ^2$	$\Xi_c^0 o n \overline{K}^0$	$\left a-b+2e-2f-2g ight ^{2}$
$\Xi_c^0\to \Xi^- K^+$	$\left -a-c-2e ight ^2$	$\Xi_c^0\to \Xi^0 K^0$	$\left -a+b-2e+2f+2g\right ^2$
$\Xi_c^0\to \Sigma^+\pi^-$	$\left b+d+2f ight ^2$	$\Xi_c^0 \to p K^-$	$\left -b-d-2f ight ^2$
$\Xi_c^+\to\Lambda^0\pi^+$	$rac{1}{6}\left -a-b-c-3d+2e+2f-4g ight ^2$	$\Xi_c^+\to \Sigma^0\pi^+$	$rac{1}{2}\left -a+b+c+d+2e-2f ight ^2$
$\Xi_c^+\to \Sigma^+\pi^0$	$rac{1}{2}\left a-b+c+d-2e+2f ight ^{2}$	$\Xi_c^+\to \Sigma^+\eta^0$	$\tfrac{1}{6}\left -a-b-3c-d+2e+2f+4g\right ^2$
$\Xi_c^+ \to p \overline{K}^0$	$\left -a+d+2e-2g\right ^2$	$\Xi_c^+ \to \Xi^0 K^+$	$\left -b+c+2f+2g ight ^2$
$\Lambda_c^+\to \Delta^+\pi^0$	$rac{2}{3}\left -lpha-\gamma-\delta ight ^2$	$\Lambda_c^+\to \Delta^+\eta^0$	$rac{2}{9}\left lpha+eta-\gamma ight ^2$
$\Lambda_c^+\to\Delta^0\pi^+$	$rac{1}{3}\left -2lpha+eta-2\gamma-\delta ight ^2$	$\Lambda_c^+ \to \Sigma^{*+} K^0$	$rac{1}{3}\left -2lpha+eta+\delta ight ^2$
$\Lambda_c^+\to \Sigma^{*0}K^+$	$rac{1}{6}\left 2lpha+eta-2\gamma-\delta ight ^2$	$\Lambda_c^+\to \Delta^{++}\pi^-$	$ eta+\delta ^2$
$\Xi_c^+\to \Delta^+ \overline{K}^0$	$rac{1}{3}\left 2lpha-eta-\delta ight ^2$	$\Xi_c^+ \to \Sigma^{*0} \pi^+$	$rac{1}{6}\left -2lpha-eta+2\gamma+\delta ight ^2$
$\Xi_c^+\to \Sigma^{*+}\eta^0$	$\frac{1}{18} \left 4\alpha + \beta + 2\gamma + 3\delta \right ^2$	$\Xi_c^+\to \Xi^{*0}K^+$	$rac{1}{3}\left 2lpha-eta+2\gamma+\delta ight ^2$
$\Xi_c^+ \to \Delta^{++} K^-$	$ -eta-\delta ^2$	$\Xi_c^+\to \Sigma^{*+}\pi^0$	$rac{1}{6}\left -eta+2\gamma+\delta ight ^2$
$\Xi_c^0\to \Delta^0 \overline{K}^0$	$rac{1}{3}\left 2lpha-eta+2\gamma-\delta ight ^2$	$\Xi_c^0\to \Sigma^{*0}\pi^0$	$rac{1}{12}\left 2lpha-eta-2\gamma+3\delta ight ^2$
$\Xi_c^0\to \Sigma^{*0}\eta^0$	$rac{1}{36}\left 2lpha-eta-2\gamma+3\delta ight ^2$	$\Xi_c^0\to \Xi^{*0}K^0$	$rac{1}{3}\left 2lpha-eta+2\gamma-\delta ight ^2$
$\Xi_c^0\to \Sigma^{*+}\pi^-$	$rac{1}{3}\left -eta+2\gamma-\delta ight ^2$	$\Xi_c^0 \to \Sigma^{*-} \pi^+$	$rac{4}{3}\left -eta+\delta ight ^2$
$\Xi_c^0\to \Xi^{*-}K^+$	$rac{4}{3}\left -eta+\delta ight ^2$	$\Xi_c^0\to \Delta^+ K^-$	$rac{1}{3}\left -eta+2\gamma-\delta ight ^2$

Doubly Cabibbo-suppressed processes

Process	Squared matrix element (mod s_1^4)	Process	Squared matrix element (mod s_1^4)
$\Lambda_c^+ o p K^0$	$ c+d-2g ^2$	$\Lambda_c^+ \to n K^+$	$\left c+d+2g ight ^{2}$
$\Xi_c^0\to \Sigma^- K^+$	$ a+c+2e ^2$	$\Xi_c^0\to \Lambda^0 K^0$	$\frac{1}{6}\left a-2b+c+2e+4f-4g\right ^{2}$
$\Xi_c^0\to \Sigma^0 K^0$	$rac{1}{2}\left -a+c-2e ight ^2$	$\Xi_c^0 ightarrow n\eta^0$	$rac{1}{6}\left -2a+b+d-4e+2f+4g ight ^2$
$\Xi_c^+ \to \Lambda^0 K^+$	$rac{1}{6}\left -a+2b-c+2e-4f-4g ight ^2$	$\Xi_c^+\to \Sigma^0 K^+$	$rac{1}{2}\left -a+c+2e ight ^2$
$\Xi_c^+\to \Sigma^+ K^0$	$ -a-c+2e ^2$	$\Xi_c^+ \to p \eta^0$	$rac{1}{6} \left 2a - b - d - 4e + 2f + 4g ight ^2$
$\Xi_c^+ \to p \pi^0$	$rac{1}{2}\left -b+d+2f ight ^2$	$\Xi_c^+ \to n\pi^+$	$\left -b-d+2f\right ^2$
$\Lambda_c^+\to \Delta^+ K^0$	$rac{4}{3}\left lpha ight ^2$	$\Lambda_c^+\to \Delta^0 K^+$	$rac{4}{3}\left lpha ight ^2$
$\Xi_c^+\to \Delta^+\eta^0$	$rac{2}{9}\left -2lpha+eta-\gamma ight ^2$	$\Xi_c^+\to \Sigma^{*0}K^+$	$rac{1}{6}\left -2lpha+eta-2\gamma-\delta ight ^2$
$\Xi_c^+\to \Delta^{++}\pi^-$	$ eta+\delta ^2$	$\Xi_c^+\to \Sigma^{*+}K^0$	$rac{1}{3}\left eta+\delta ight ^2$
$\Xi_c^+\to \Delta^0\pi^+$	$rac{1}{3}\left eta-2\gamma-\delta ight ^2$	$\Xi_c^+\to \Delta^+\pi^0$	$rac{2}{3}\left \gamma+\delta ight ^2$
$\Xi_c^0\to \Delta^0\eta^0$	$rac{2}{9}\left -2lpha+eta-\gamma ight ^2$	$\Xi_c^0\to \Sigma^{*0}K^0$	$rac{1}{6}\left -2lpha+eta-2\gamma+\delta ight ^2$
$\Xi_c^0\to \Delta^+\pi^-$	$rac{1}{3}\left eta-2\gamma+\delta ight ^2$	$\Xi_c^0\to \Delta^-\pi^+$	$ eta-\delta ^2$
$\Xi_c^0\to \Sigma^{*-}K^+$	$rac{1}{3}\left eta-\delta ight ^2$	$\Xi_c^0\to \Delta^0\pi^0$	$rac{2}{3}\left \gamma-\delta ight ^2$

Isospin Relations

$$\mathcal{A}(\Lambda_c^+ \to \Sigma^+ \pi^0) + \mathcal{A}(\Lambda_c^+ \to \Sigma^0 \pi^+) = 0$$
$$\mathcal{A}(\Lambda_c^+ \to \Delta^{++} K^-) - \sqrt{3} \mathcal{A}(\Lambda_c^+ \to \Delta^+ \overline{K}^0) = 0$$
$$\mathcal{A}(\Lambda_c^+ \to \Delta^+ K^0) - \mathcal{A}(\Lambda_c^+ \to \Delta^0 K^+) = 0$$
$$\mathcal{A}(\Lambda_c^+ \to \Sigma^{*+} \pi^0) - \mathcal{A}(\Lambda_c^+ \to \Sigma^{*0} \pi^+) = 0$$
$$\mathcal{A}(\Xi_c^+ \to \Delta^+ \eta^0) - \mathcal{A}(\Xi_c^0 \to \Delta^0 \eta^0) = 0$$

U-spin Relations

 $\frac{1}{\sin^2 \theta} \mathcal{A}(\Lambda_c^+ \to nK^+) + \mathcal{A}(\Xi_c^+ \to \Xi^0 \pi^+) = 0$ $\mathcal{A}(\Lambda_c^+ \to \Xi^0 K^+) + \frac{1}{\sin^2 \theta} \mathcal{A}(\Xi_c^+ \to n\pi^+) = 0$ $\mathcal{A}(\Lambda_c^+ \to n\pi^+) - \mathcal{A}(\Xi_c^+ \to \Xi^0 K^+) = 0$ $\mathcal{A}(\Lambda_c^+ \to p\overline{K}^0) + \frac{1}{\sin^2\theta} \mathcal{A}(\Xi_c^+ \to \Sigma^+ K^0) = 0$ $\frac{1}{\sin^2 \theta} \mathcal{A}(\Lambda_c^+ \to pK^0) + \mathcal{A}(\Xi_c^+ \to \Sigma^+ \overline{K}^0) = 0$ $\mathcal{A}(\Lambda_c^+ \to \Sigma^+ K^0) - \mathcal{A}(\Xi_c^+ \to p\overline{K}^0) = 0$ $\mathcal{A}(\Lambda_c^+ \to \Delta^{++} K^-) - \frac{1}{\sin \theta} \mathcal{A}(\Lambda_c^+ \to \Delta^{++} \pi^-) = 0$ $\mathcal{A}(\Lambda_c^+ \to \Delta^+ \overline{K}^0) - \frac{1}{\sin^2 \theta} (\Xi_c^+ \to \Sigma^{*+} K^0) = 0$

V-spin Relations

 $\mathcal{A}(\Xi_c^+ \to \Sigma^{*+} \overline{K}^0) - \mathcal{A}(\Xi_c^+ \to \Xi^{*0} \pi^+) = 0$ $\mathcal{A}(\Xi_c^+ \to \Delta^{++} \pi^-) - \sqrt{3} \mathcal{A}(\Xi_c^+ \to \Sigma^{*+} K^0) = 0$ $2\sqrt{6}\mathcal{A}(\Lambda_c^+ \to \Sigma^{*+}\pi^0) + \mathcal{A}(\Lambda_c^+ \to \Delta^{++}K^-) - \sqrt{3}\mathcal{A}(\Lambda_c^+ \to \Xi^{*0}K^+)$ $+2\sqrt{6}\mathcal{A}(\Xi_c^0\to\Xi^{*0}\pi^0)+\sqrt{3}\mathcal{A}(\Xi_c^0\to\Sigma^{*+}K^-)-\mathcal{A}(\Xi_c^0\to\Omega^-K^+)=0$ $\sqrt{2}(\Lambda_c^+ \to \Sigma^{*0}\pi^+) + \mathcal{A}(\Lambda_c^+ \to \Delta^+\overline{K}^0) + \sqrt{2}\mathcal{A}(\Xi_c^0 \to \Sigma^{*0}\overline{K}^0) + \mathcal{A}(\Xi_c^0 \to \Xi^{*-}\pi^+) = 0$ $\sqrt{3}\mathcal{A}(\Lambda_c^+ \to \Sigma^{*+}K^0) - \mathcal{A}(\Lambda_c^+ \to \Delta^{++}\pi^-) + \sqrt{3}\mathcal{A}(\Xi_c^0 \to \Xi^{*0}K^0)$ $-\sqrt{3}\mathcal{A}(\Xi_{a}^{0}\rightarrow\Sigma^{*+}\pi^{-})=0$ $\mathcal{A}(\Lambda_a^+ \to \Delta^+ K^0) + \sqrt{2}\mathcal{A}(\Xi_a^0 \to \Sigma^{*0} K^0) - \mathcal{A}(\Xi_a^0 \to \Delta^+ \pi^-) = 0$

Test Isospin symmetry

 $\mathcal{A}(\Lambda_c^+ \to \Sigma^+ \pi^0) + \mathcal{A}(\Lambda_c^+ \to \Sigma^0 \pi^+) = 0$

$\begin{array}{ll} \Sigma^{0}\pi^{+} & 1.27 \pm 0.08 \pm 0.03 \\ \Sigma^{+}\pi^{0} & 1.18 \pm 0.10 \pm 0.03 \end{array}$

[BESIII, PRL116,052001(2016)]

Predictions

$$\mathcal{A}(\Lambda_c^+ \to \Xi^0 K^+) + \frac{1}{\sin^2 \theta} \mathcal{A}(\Xi_c^+ \to n\pi^+) = 0$$
$$\mathcal{B}(\Xi_c^+ \to n\pi^+) = (3.909 \pm 0.028) \times 10^{-5}$$
$$\mathcal{A}(\Lambda_c^+ \to p\overline{K}^0) + \frac{1}{\sin^2 \theta} \mathcal{A}(\Xi_c^+ \to \Sigma^+ K^0) = 0$$
$$\mathcal{B}(\Xi_c^+ \to \Sigma^+ K^0) = (2.471 \pm 0.006) \times 10^{-4}$$

$$\mathcal{A}(\Lambda_c^+ \to \Delta^{++} K^-) - \sqrt{3} \mathcal{A}(\Lambda_c^+ \to \Delta^+ \overline{K}^0) = 0$$

$$\mathcal{B}(\Lambda_c^+ \to \Delta^+ \overline{K}^0) = (1.208 \pm 0.277) \times 10^{-3}$$

$$\mathcal{A}(\Lambda_c^+ \to \Delta^{++} K^-) - \frac{1}{\sin \theta} \mathcal{A}(\Lambda_c^+ \to \Delta^{++} \pi^-) = 0$$
$$\mathcal{B}(\Lambda_c^+ \to \Delta^{++} \pi^-) = (6.215 \pm 1.425) \times 10^{-4}$$

 $\overline{\Lambda_c^+ \to p \pi^+ \pi^-}$ (3.91 ± 0.28 ± 0.15 ± 0.24) × 10⁻³ [BESIII, PRL117,232002(2016)]

$$\mathcal{A}(\Lambda_c^+ \to \Delta^+ \overline{K}^0) - \frac{1}{\sin^2 \theta} (\Xi_c^+ \to \Sigma^{*+} K^0) = 0 \qquad \text{Predictions}$$

$$\frac{\mathcal{B}(\Xi_c^+ \to \Sigma^{*+} K^0) = (6.085 \pm 0.007) \times 10^{-6}}{\mathcal{A}(\Lambda_c^+ \to \Delta^{++} K^-) = -\frac{1}{\sin \theta} \mathcal{A}(\Xi_c^+ \to \Delta^{++} K^-)}$$

$$\frac{\mathcal{B}(\Xi_c^+ \to \Delta^{++} K^-) = (1.235 \pm 0.057) \times 10^{-3}}{\mathcal{B}(\Xi_c^+ \to \Delta^{++} K^-) = (1.235 \pm 0.057) \times 10^{-3}}$$

$$\mathcal{A}(\Lambda_c^+ \to \Delta^{++} K^-) = \frac{1}{\sin^2 \theta} \mathcal{A}(\Xi_c^+ \to \Delta^{++} \pi^-)$$

$$\frac{\mathcal{B}(\Xi_c^+ \to \Delta^{++} \pi^-) = (6.813 \pm 0.057) \times 10^{-5}}{\mathcal{A}(\Lambda_c^+ \to p \overline{K}^0) + \frac{\sqrt{2}}{\sin \theta} \mathcal{A}(\Lambda_c^+ \to p \pi^0) + \sqrt{2} \mathcal{A}(\Lambda_c^+ \to p \pi^0) = 0}$$

$$(7.146 \pm 1.492) \times 10^{-5} < \mathcal{B}(\Lambda_c^+ \to p \pi^0) < (4.530 \pm 0.180) \times 10^{-3}$$

 $\mathcal{B}(\Lambda_c^+ \to p \pi^0) < 2.7 \times 10^{-4}$ [BESIII, 1702.05279]

SU(3) analysis

More data -> More predictions

Tested by experimental data

Check theoretical calculations

2. Prediction on $\Xi_c^+ \rightarrow pK^-\pi^+$

 $\Xi_c^+ \rightarrow pK^-\pi^+$

- This process is always used to search for new particles and their properties
 - + New Ω_c states observed by LHCb [PRL118,182001(2017)
 - in $\Xi_c^+ K^-$ with $\Xi_c^+ \rightarrow p K^- \pi^+$
 - + Ξ_b and Ξ_b states observed by LHCb [PRL114,062004(2014)]
 - in $\Xi_b{}^0\pi^-$ with $\Xi_b{}^0 \rightarrow \Xi_c{}^+\pi^-$, $\Xi_c{}^+ \rightarrow pK^-\pi^+$
 - + Mass and lifetime of Ξ_b^0 by LHCb [PRL113,032001(2014)]
 - via $\Xi_b^0 \rightarrow \Xi_c^+ \pi^-$, $\Xi_c^+ \rightarrow p K^- \pi^+$
 - Suggested to measure $\mathcal{Z}_{cc}^{++} \rightarrow \mathcal{Z}_{c}^{+} \pi^{+}$ [1703.09086]
- But its branching ratio not directly measured

$$\Xi_c^+$$

- has the longest lifetime of charmed baryons
 - $$\begin{split} \tau(\Lambda_c^+) &= (200\pm 6)\times 10^{-15}s, \qquad \tau(\Xi_c^+) = (442\pm 26)\times 10^{-15}s, \\ \tau(\Xi_c^0) &= (112^{+13}_{-10})\times 10^{-15}s, \qquad \tau(\Omega_c^0) = (69\pm 12)\times 10^{-15}s. \end{split}$$
 - better for measurements
 - Mass: m=2467.87+-0.30MeV

mLc=2286.46+-0.14MeV

Branching Ratios of $E_c^+ \rightarrow pK^-\pi^+$

- Absolute value not measured
- But compared to $\mathcal{Z}_c^+ \rightarrow \mathcal{Z}^- \pi^+ \pi^+$

PDG	$\Gamma(\Xi_c^+ \to pK^-\pi^+$)/ $\Gamma(\Xi_c^+ \to \Xi^- 2 \pi^+)$				
	VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
	0.21 ± 0.04	OUR AVERAGE				
	0.194 ±0.054	47 ±11	VAZQUEZ- JAURE	2008	SELX	Σ^- nucleus, 600 GeV
	$0.234 \pm 0.047 \pm 0.022$	202	LINK	2001B	FOCS	γ nucleus

We should know the branching fraction for estimation on events

Branching Ratios of $E_c^+ \rightarrow pK^-\pi^+$

Under U-spin symmetry

Branching Ratios of $\Xi_c^+ \rightarrow pK^-\pi^+$					
Precision improvements are required					
LHCb $\mathcal{A}(\Xi_c^+ \to p\overline{K}^{*0}) =$	$\mathcal{A}(\Lambda_c^+ \to \Sigma^+)$ $\Sigma^+ K^+ \pi^- \qquad ($	(2.1 ± 0.6)	BESIII $\times 10^{-3}$		
$\Gamma(\Xi_c^+ \to p\overline{K}^*(892)^0)/\Gamma(\Xi_c^+ \to pK^-\pi^+)$	(2° K (892)* ((3.0 ± 1.0)	PDG		
VALUE	DOCUMENT ID		TECN		
$0.54 \pm 0.09 \pm 0.05$	LINK	2001B	FOCS		
$Br(\Xi_c^+ \to pK^-\pi^+) = (2$	$2.2 \pm 0.8)\%$	[17	703.09086]		

 $E_c^0 \rightarrow pK^-K^-\pi^+$

- This process is always used to search for new particles and their properties
 - + Mass and lifetime of Ξ_b^- by LHCb [PRL113,242002(2014)]
 - in $\Xi_b^- \rightarrow \Xi_c^0 \pi^-$, $\Xi_c^0 \rightarrow p K^- K^- \pi^+$
 - * Mass and lifetime of Ω_b^- by LHCb [PRD93,092007(2016)]
 - using calibration of $\Xi_b^- \rightarrow \Xi_c^0 \pi^-$, $\Xi_c^0 \rightarrow pK^-K^-\pi^+$
 - + Mass and lifetime of $\mathcal{\Xi}_b^{*0}$ by LHCb [JHEP1605(2016)161]
 - in $\Xi_b^-\pi^+$ with $\Xi_b^- \rightarrow \Xi_c^0\pi^-$, $\Xi_c^0 \rightarrow pK^-K^-\pi^+$
- But its branching ratio not directly measured

3.
$$\Lambda_c^+ \to p K_S^0$$
 and $\Lambda_c^+ \to p K_L^0$

[D.Wang, FSY, in ready]

Motivation

- Charmed baryon decays have been widespread concerned recently
 - Many new decay modes have been observed
 - They provide a platform to study the heavy-to-light baryonic transitions
- Charmed baryon decays are classified into three types: CF, SCS and DCS decays
- The studies of DCS processes are of great interest
 - DCS decays are highly sensitive to new physics
 - help us to understand the dynamics of charmed hadron decays and test the SU(3) symmetry

Search for two-body DCS

- Searching for the DCS transitions in charmed baryon decays is significant subject
- The first and only evidence of DCS transitions of charmed baryon is found in three-body decays:

 $\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)/\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (2.35 \pm 0.27 \pm 0.21) \times 10^{-3}$

S. B. Yang et al. [Belle Collaboration], Phys. Rev. Lett. 117, no. 1, 011801 (2016)
 The two-body DCS decays have not been seen

The DCS transitions can manifest themselves through interfering with the CF amplitudes in those modes with neutral kaons

$$\Rightarrow K_S^0 - K_L^0$$
 asymmetry

D. Wang, F. S. Yu, P. F. Guo and H. Y. Jiang, Phys. Rev. D 95, no. 7, 073007 (2017).

Search for CP violation

- Op to now, there is no indication of CP violation in charmed decays
- Oirect CP violation in the SCS processes has been studied a lot
 - It is induced by the interference between tree and penguin

OPV can also occur in the modes with neutral kaons

- Interference between Cabibbo-favored (CF) and doubly Cabibbo-suppressed (DCS) amplitudes
- A new measurable effect of CPV in D decaying into $K_{S,L}^0$: the interference between charm decay and kaon mixing
 - This comment is still valid in baryon sector

[D.Wang, FSY, H.n.Li, in ready]

Advantages compared to SCS processes:

- Only trees, no penguins, less ambiguities in theory
 Large branching fractions, decrease errors in experiments
- Since we have not found the CP asymmetry of charm in D meson decays, it would be a beneficial attempt to search for the CP violation in charmed baryon decays

This work:

- 1. Discuss the $K_S^0 K_L^0$ asymmetry in charmed baryon decays
- 2. Analyze the time-dependent and the time-integral CP asymmetry in charmed baryon decays

$K_S^0 - K_L^0$ asymmetry

The K⁰_S – K⁰_L asymmetry in charmed-baryon anti-triplet decaying into light baryon octet and neutral kaons is defined as

 $R(B_c(\overline{3}) \to B(8)K^0_{S,L}) \equiv \frac{\Gamma(B_c(\overline{3}) \to B(8)K^0_S) - \Gamma(B_c(\overline{3}) \to B(8)K^0_L)}{\Gamma(B_c(\overline{3}) \to B(8)K^0_S) + \Gamma(B_c(\overline{3}) \to B(8)K^0_L)}$

• K_S^0 and K_L^0 are the combinations of K^0 and \overline{K}^0 :

 $|K_{S,L}^{0}\rangle = p_{K}|K^{0}\rangle \mp q_{K}|\overline{K}^{0}\rangle,$

$$p_{\mathcal{K}} = rac{1+\epsilon}{\sqrt{2(1+|\epsilon|^2)}}, \qquad q_{\mathcal{K}} = rac{1-\epsilon}{\sqrt{2(1+|\epsilon|^2)}},$$

Image $K_S^0 - K_L^0$ asymmetry is not sensitive to the CP violating effect in the $K^0 - \overline{K}^0$ mixing, we can neglect the parameter ϵ

• The decay amplitudes of $B_c(3) \to B(8)K_{S,L}^0$ can be decomposed as

$$egin{aligned} \mathcal{A}(B_c(\overline{3}) &
ightarrow B(8) \mathcal{K}^0_S) = rac{1}{\sqrt{2}} (V^*_{cd} V_{us} \mathcal{T}_{DCS} \, e^{i \delta_{DCS}} - V^*_{cs} V_{ud} \mathcal{T}_{CF} \, e^{i \delta_{CF}}), \ \mathcal{A}(B_c(\overline{3}) &
ightarrow B(8) \mathcal{K}^0_L) = rac{1}{\sqrt{2}} (V^*_{cd} V_{us} \mathcal{T}_{DCS} \, e^{i \delta_{DCS}} + V^*_{cs} V_{ud} \mathcal{T}_{CF} \, e^{i \delta_{CF}}). \end{aligned}$$

With the conventions of

$$rac{\partial}{\partial CS} E^{i\delta_{DCS}} = r_f e^{i\delta_f}, \qquad rac{V_{cd}^* V_{us}}{V_{cs}^* V_{ud}} \simeq -\tan^2 heta_C e^{i\phi} \sim \lambda^2,$$

the $K_S^0 - K_L^0$ asymmetry can be expressed as

 $R(B_c(\overline{3}) \rightarrow B(8)K^0_{S,L}) \simeq 2r_f \tan^2 \theta_C \cos \delta_f$

 $\mathbb{R} (B_c(\overline{3}) \to B(8) K^0_{S,L}) \sim \mathcal{O}(10^{-2})$

• $K_S^0 - K_L^0$ asymmetries are proportional to parameter r_f

- If there is no DCS amplitudes in some decay modes, $r_f = 0$, the $K_S^0 K_L^0$ asymmetry will be zero
- The non-zero $K_S^0 K_L^0$ asymmetry will be the evidence of the DCS decays of charmed baryons
- We suggest to measure $R(\Lambda_c^+ \rightarrow pK_{S,L}^0)$:
 - The branching fraction of $\Lambda_c^+ \to pK_S^0$ has been measured:

 $\mathcal{B}(\Lambda_c^+ \to p K_S^0)_{\mathsf{BESIII}} = (1.52 \pm 0.08 \pm 0.03)\%.$

- M. Ablikim *et al.* [BESIII Collaboration], Phys. Rev. Lett. **116**, no. 5, 052001 (2016)
- The two-body charmed baryon decays can be generalized to multi-body decays

For instance, $\Lambda_c^+ \to pK_{S,L}^0 \pi^0$, $\Lambda_c^+ \to pK_{S,L}^0 \pi^+ \pi^-$

CP asymmetry

• The CP asymmetries of $B_c(\overline{3}) \rightarrow B(8)K_S^0$ decays are defined by

 $\mathcal{A}_{CP}(\mathcal{B}_{c}(\overline{3}) \to p\mathcal{K}_{S}^{0}) \equiv \frac{\Gamma(\mathcal{B}_{c}(\overline{3}) \to \mathcal{B}(8)\mathcal{K}_{S}^{0}) - \Gamma(\overline{\mathcal{B}}_{c}(\overline{3}) \to \overline{\mathcal{B}}(8)\mathcal{K}_{S}^{0})}{\Gamma(\mathcal{B}_{c}(\overline{3}) \to \mathcal{B}(8)\mathcal{K}_{S}^{0}) + \Gamma(\overline{\mathcal{B}}_{c}(\overline{3}) \to \overline{\mathcal{B}}(8)\mathcal{K}_{S}^{0})}$

The time-dependent CPV is obtained as $egin{aligned} m{A}_{CP}(t) \simeq rac{m{A}_{CP}^{\overline{m{K}}^0}(t) + m{A}_{CP}^{dir}(t) + m{A}_{CP}^{dir}(t)}{m{S}_{\pi\pi}(t)} \end{aligned}$ \bowtie $A_{CP}^{\overline{K}^0}(t)$ is the CP violation in neural kaon mixing $A_{CP}^{\overline{K}^{\circ}}(t) = 2\mathcal{R}e[\epsilon]e^{-\Gamma_{s}t} - 2e^{-\Gamma t}(\mathcal{R}e[\epsilon]\cos(\Delta mt) + \mathcal{I}m[\epsilon]\sin(\Delta mt))$ \bowtie $A_{CP}^{dir}(t)$ is direct CP asymmetry $A_{CP}^{dir}(t) = -2e^{-\Gamma_{s}t} \tan^{2}\theta_{C} r_{f} \sin \delta_{f} \sin \phi$ \square $A_{CP}^{int}(t)$ is the interference between the charm decays and the $K^0 - \overline{K}^0$ mixing $A_{CP}^{int}(t) = 4 \tan^2 \theta_C r_f \cos \phi \sin \delta_f (\mathcal{I}m[\epsilon]e^{-\Gamma_s t})$ $-e^{-\Gamma t}(\mathcal{I}m[\epsilon]\cos(\Delta mt) - \mathcal{R}e[\epsilon]\sin(\Delta mt)))$ Denominator: $S_{\pi\pi}(t) = e^{-\Gamma_S t} (1 + 2 \tan^2 \theta_C r_f \cos \delta_f \cos \phi)$ R

• The time-integral CP asymmetry is defined as $A_{CP}(t_1, t_2) \simeq \frac{\int_{t_1}^{t_2} dt \left[A_{CP}^{\overline{K}^0}(t) + A_{CP}^{dir}(t) + A_{CP}^{int}(t)\right]}{\int_{t_1}^{t_2} dt S_{\pi\pi}(t)}$

The time-integral CP asymmetry is expressed as

$$\begin{aligned} \mathcal{A}_{CP}(t_{1},t_{2}) \simeq & \frac{-2\tan^{2}\theta_{C}r_{f}\sin\delta_{f}\sin\phi}{1+2\tan^{2}\theta_{C}r_{f}\cos\delta_{f}\cos\phi} + \frac{2\mathcal{R}e[\epsilon] + 4\tan^{2}\theta_{C}r_{f}\mathcal{I}m[\epsilon]\cos\phi\sin\delta_{f}}{1+2\tan^{2}\theta_{C}r_{f}\cos\delta_{f}\cos\phi} \\ & \times \left[1 - \frac{\left[c(t_{1}) - c(t_{2})\right] + \frac{\mathcal{I}m[\epsilon] - 2\tan^{2}\theta_{C}r_{f}\mathcal{R}e[\epsilon]\cos\phi\sin\delta_{f}}{\mathcal{R}e[\epsilon] + 2\tan^{2}\theta_{C}r_{f}\mathcal{I}m[\epsilon]\cos\phi\sin\delta_{f}}\left[s(t_{1}) - s(t_{2})\right]}{\tau_{S}\Gamma(1+x^{2})(e^{-t_{1}/\tau_{S}} - e^{-t_{2}/\tau_{S}})}\right],\end{aligned}$$

in which $x = \Delta m / \Gamma$, $c(t) = e^{-\Gamma t} [\cos(\Delta m t) - x \sin(\Delta m t)]$, and $s(t) = e^{-\Gamma t} [x \cos(\Delta m t) + \sin(\Delta m t)]$

Solution With the approximation of $\mathbf{x} = \Delta m / \Gamma \approx 1$, we get $\begin{aligned} A_{CP}(t_1 \ll \tau_S, \tau_S \ll t_2 \ll \tau_L) \simeq \\ -2\mathcal{I}m[\epsilon] - 2\tan^2 \theta_C r_f \sin \delta_f \sin \phi + 4\tan^2 \theta_C r_f \mathcal{R}e[\epsilon] \cos \phi \sin \delta_f \\ 1 + 2\tan^2 \theta_C r_f \cos \phi \cos \delta_f \end{aligned}$

- $A_{CP}(t_1 \ll \tau_S, \tau_S \ll t_2 \ll \tau_L)$ is dominated by the interference between \overline{K}^0 decays with and without $K^0 \overline{K}^0$ mixing $A_{CP}^{\overline{K}^0}$
- The interference between charm decays and neutral kaon mixing A_{CP}^{int} is at the order of $\mathcal{O}(10^{-4})$, which would be observed by experiments in the near future
- w We suggest to measure the CP asymmetry in Λ_c^+ → pK_S^0 channel

Numerical Analysis via SU(3) symmetry

- We use a SU(3) symmetry analysis, in which the amplitudes are extracted by global fit, to estimate these observables we discussed above
- The reason of the SU(3) symmetry analysis
 - The description of charmed baryon decays based on the factorization assumption doesn't work well
 - The flavor SU(3) symmetry analysis has been argued to work better in charmed baryon decays
- SCS processes are expected to have large SU(3) breaking effect and not included in our analysis

The effective Hamiltonian of charmed baryon decays can be expressed as

 $\begin{aligned} \mathcal{H}_{eff} = & e \mathcal{H}^{ab}(6) B_c(\overline{3})_{ac} \overline{B}(8)^c_d M(8)^d_b + f \mathcal{H}^{ab}(6) B_c(\overline{3})_{ac} M(8)^c_d \overline{B}(8)^d_b \\ &+ g \mathcal{H}^{ab}(6) \overline{B}(8)^c_a M(8)^d_b B_c(\overline{3})_{cd} \end{aligned}$

⇒ This Hamiltonian is by following hypothesis

The operators can be decomposed into irreducible representations of SU(3) symmetry group. For example:

 $(\bar{s}c)(\bar{u}d) = \mathcal{O}_6 + \mathcal{O}_{\overline{15}},$

 $\mathcal{O}_6 = \frac{1}{2}[(\bar{s}c)(\bar{u}d) - (\bar{u}c)(\bar{s}d)], \qquad \mathcal{O}_{\overline{15}} = \frac{1}{2}[(\bar{s}c)(\bar{u}d) + (\bar{u}c)(\bar{s}d)]$

- The sextet component of the Hamiltonian dominate charmed baryon decays by make an analogy with strange decays
- M. J. Savage and R. P. Springer, Phys. Rev. D 42, 1527 (1990)

Modes	Representation	$\mathcal{B}_{exp}(\%)$	$\mathcal{B}_{SU(3)}(\%)$
$\Lambda_c^+ ightarrow \Lambda \pi^+$	$\frac{1}{\sqrt{6}}(-2e-2f-2g)$	1.30 ± 0.07	1.31 ± 1.05
$\Lambda_c^+ o \Sigma^0 \pi^+$	$\frac{1}{\sqrt{2}}(-2e+2f+2g)$	1.29 <u>+</u> 0.07	1.26 <u>+</u> 0.86
$\Lambda_c^+ o \Sigma^+ \pi^0$	$\frac{1}{\sqrt{2}}(2e-2f-2g)$	1.24 <u>+</u> 0.10	1.27 <u>+</u> 0.87
$\Lambda_c^+ o {\it pK}_{\cal S}^0$	$\frac{1}{\sqrt{2}} \tan^{2} \theta_{C}(-2g) - \frac{1}{\sqrt{2}}(-2e)$	1.58 <u>+</u> 0.08	1.58 <u>+</u> 0.13
$\Lambda_c^+ o {\it pK_L^0}$	$\frac{1}{\sqrt{2}} \tan^2 \theta_C(-2g) + \frac{1}{\sqrt{2}}(-2e)$		1.88 <u>+</u> 0.14
$\Lambda_c^+ ightarrow \Xi^0 K^+$	-2f	0.50 <u>+</u> 0.12	0.51 <u>±</u> 0.12
$\Xi^0_c ightarrow \Xi^- \pi^+$	2 <i>e</i>		1.66 <u>+</u> 0.21
$\Xi^0_c ightarrow \Xi^0 \pi^0$	$\frac{1}{\sqrt{2}}(-2e+2g)$		0.43 ± 0.40
$\Xi^0_c o \Lambda K^0_S$	$\frac{1}{\sqrt{12}} \tan^2 \theta_C(-4e + 2f + 2g) - \frac{1}{\sqrt{12}}(2e + 4f - 4g)$		0.41 <u>±</u> 0.19
$\Xi^0_c o \Lambda K^0_L$	$\frac{1}{\sqrt{12}}\tan^2\theta_C(-4e+2f+2g)+\frac{1}{\sqrt{12}}(2e+4f-4g)$		0.46 <u>+</u> 0.19
$\Xi^0_{\it c} ightarrow \Sigma^+ K^-$	2f		0.32 <u>+</u> 0.08
$\Xi_c^0 ightarrow \Sigma^0 K_S^0$	$\frac{1}{2} \tan^2 \theta_C(-2e) - \frac{1}{2}(-2f - 2g)$		0.24 <u>+</u> 0.39
$\Xi_c^0 ightarrow \Sigma^0 K_L^0$	$\frac{\overline{1}}{2}$ tan ² $\theta_C(-2e) + \frac{\overline{1}}{2}(-2f-2g)$		0.21 <u>±</u> 0.36
$\Xi_c^+ \to \Xi^0 \pi^+$	_2g		7.62 <u>+</u> 8.78
$\Xi_c^+ o \Sigma^+ K_S^0$	$\frac{1}{\sqrt{2}}$ tan ² $\theta_C(2e) - \frac{1}{\sqrt{2}}(2g)$		1.74 <u>+</u> 2.08
$\Xi_c^+ ightarrow \Sigma^+ K_L^0$	$\frac{1}{\sqrt{2}} \tan^2 \theta_C(2e) + \frac{1}{\sqrt{2}}(2g)$		2.03 ± 2.25

6 data to fix 5 parameter $\mathcal{B}(\Xi_c^0 \to \Lambda K_S^0)/\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = 0.210 \pm 0.028$

• the $K_{S}^{0} - K_{L}^{0}$ asymmetries are predicted to be

 $\begin{array}{l} R(\Lambda_c^+ \to p K_{S,L}^0) = -0.088 \pm 0.052, \ R(\Xi_c^0 \to \Lambda K_{S,L}^0) = -0.053 \pm 0.028 \\ R(\Xi_c^0 \to \Sigma^0 K_{S,L}^0) = 0.075 \pm 0.068, \ R(\Xi_c^+ \to \Sigma^+ K_{S,L}^0) = -0.076 \pm 0.045 \\ \hline \bullet A_{CP}(t_1 \ll \tau_S, \tau_S \ll t_2 \ll \tau_L) \text{ in solution I (in units of } 10^{-3}): \\ A_{CP}(\Lambda_c^+ \to p K_S^0)_I = -2.70 \pm 0.29, \ A_{CP}(\Xi_c^0 \to \Lambda K_S^0)_I = -2.26 \pm 0.58 \\ A_{CP}(\Xi_c^0 \to \Sigma^0 K_S^0)_I = -2.97 \pm 0.59, \ A_{CP}(\Xi_c^+ \to \Sigma^+ K_S^0)_I = -3.21 \pm 0.18 \\ \hline \bullet A_{CP}(t_1 \ll \tau_S, \tau_S \ll t_2 \ll \tau_L) \text{ solution II (in units of } 10^{-3}): \end{array}$

 $\begin{aligned} A_{CP}(\Lambda_c^+ \to pK_S^0)_{ll} &= -3.20 \pm 0.11, \ A_{CP}(\Xi_c^0 \to \Lambda K_S^0)_{ll} = -3.15 \pm 0.34 \\ A_{CP}(\Xi_c^0 \to \Sigma^0 K_S^0)_{ll} &= -3.95 \pm 0.59, \ A_{CP}(\Xi_c^+ \to \Sigma^+ K_S^0)_{ll} = -2.77 \pm 0.26 \end{aligned}$

Summary:

- We can search for the doubly Cabibbo-suppressed charmed baryon decays by testing the $K_S^0 K_L^0$ asymmetry in those channels involving K_S^0 and K_L^0 mesons
- The interference between charm decays and $K^0 \overline{K}^0$ mixing can induce CP asymmetry, which would be detected in the near future
- SU(3) asymmetry analysis for charmed-baryon anti-triplet decaying into the light baryon octet and pseudoscalar octet has been presented.

4. Final-state interactions

Dynamics to be understood

Topologies of two-body non-leptonic charmed baryon decays

Theoretical Framework

- 1. To understand factorizable contributions
 - tree emitted (T) diagrams
- 2. To understand non-factorizable contributions
 - final-state interacting (FSI) effects
 - Calculate rescattering effects

 $F(t, m) = \left(\frac{\Lambda^2 - m^2}{\Lambda^2 - t}\right)^n \qquad t \equiv (p_1 - p_3)^2 \qquad n = 1$ $\Lambda = m_{\text{exc}} + \eta \Lambda_{\text{OCD}} \qquad \text{[Cheng, Chua, Soni, PRD 71, 014030 (2005)]}$

Results are very sensitive to the value of η

PDG $\mathcal{B}(\Lambda_c^+ \to p\phi) = (1.04 \pm 0.21) \times 10^{-3}$

*η~*1.3

Summary

- Charm baryon physics is becoming more interesting, benefited by BESIII
- More measurements at BESIII and LHCb, and more theoretical studies are worth for your hard work!

Thank you !