Collaborative Research Center CRC 110 "Symmetries and the emergence of structure in QCD"

Status of project B.11 "Coupled-channel dynamics"

Deborah Rönchen, Bing-Song Zou

CRC 110 General Meeting, Beijing, August 2017

HPC support by Jülich Supercomputing Centre

Goals:

- Extraction of N^{*}, Δ^{*} and Y^{*} resonances in pion-, kaon-, photon- and electron induced reactions using a dynamical coupled-channel (DCC) approach
- Analysis of super-heavy $N^*_{c\bar{c}}$, $\Lambda^*_{c\bar{c}}$ and $N^*_{b\bar{b}}$, $\Lambda^*_{b\bar{b}}$

Staff:

- Pls: D. Rönchen (UBO) and B.-S. Zou (ITP)
- PhD students: Y.-H. Lin, C.-W. Shen (ITP)
- Collaborators: F.-K. Guo, J. Haidenbauer (FZJ), U.-G. Meißner (UBO, FZJ)
- External collaborators: M. Döring (GWU), Z.-H. Guo (Hebei Normal University), H. Haberzettl (GWU), F. Huang (UCAS), K. Nakayama (UGA)

Methods: the Jülich-Bonn (JüBo) dynamical coupled-channels (DCC) aproach

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

- theoretical constraints on the S matrix: unitarity and analyticity
- resonances = poles on the 2nd Riemann sheet of T
- potentials V constructed from chiral effective L
- s-channel diagrams: T^P genuine resonance states
- t- and u-channel: T^{NP} dynamical generation of poles possible

Methods: the Jülich-Bonn (JüBo) dynamical coupled-channels (DCC) aproach

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

- theoretical constraints on the S matrix: unitarity and analyticity
- resonances = poles on the 2nd Riemann sheet of T
- potentials V constructed from chiral effective L
- s-channel diagrams: T^P genuine resonance states
- t- and u-channel: T^{NP} dynamical generation of poles possible

Methods: the Jülich-Bonn (JüBo) dynamical coupled-channels (DCC) aproach

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

- theoretical constraints on the S matrix: unitarity and analyticity
- resonances = poles on the 2nd Riemann sheet of T
- potentials V constructed from chiral effective L
- s-channel diagrams: T^P genuine resonance states
 - t- and u-channel: T^{NP} dynamical generation of poles possible

Results I: Impact of new polarization data on $\gamma p \rightarrow \pi N$ amplitudes joint effort of the BnGa, JüBo, and SAID groups EPJ A 52, 284 (2016)

- recent new data in pion photoproduction: *E*, *G*, *H*, *P*, *T* (ELSA), Σ (JLab), Σ (MAMI) \Rightarrow included in the BnGa, JüBo, SAID fits
 - compare multipoles before and after the inclusion of the new data
 - convergence to a common solution?

Data: CBELSA/TAPS Collaboration.

Predictions: black solid: BnGa, blue dashed: JüBo, red dash-dotted: SAID ,green dotted: MAID

Results I: Impact of new polarization data on $\gamma p \rightarrow \pi N$ amplitudes joint effort of the BnGa, JüBo, and SAID groups EPJ A 52, 284 (2016)

- recent new data in pion photoproduction: *E*, *G*, *H*, *P*, *T* (ELSA), Σ (JLab), Σ (MAMI) \Rightarrow included in the BnGa, JüBo, SAID fits
 - compare multipoles before and after the inclusion of the new data
 - convergence to a common solution?

Data: CBELSA/TAPS Collaboration. <u>Fit results:</u> black solid: BnGa, blue dashed: JüBo, red dash-dotted: SAID

Results I: Impact of new polarization data on $\gamma p \rightarrow \pi N$ amplitudes joint effort of the BnGa, JüBo, and SAID groups EPJ A 52, 284 (2016)

With new, precise data:

- → convergence to a common solution?
 - Pairwise variances between two PWAs:

$$\operatorname{var}(1,2) = \frac{1}{2} \sum_{i=1}^{16} \left(\mathcal{M}_1(i) - \mathcal{M}_2(i) \right) \left(\mathcal{M}_1^*(i) - \mathcal{M}_2^*(i) \right)$$

 $(\mathcal{M}: \gamma p \rightarrow \pi^0 p \text{ multipoles up to } L = 4)$

- beyond 1.7 GeV: BnGa, JüBo, SAID multipoles now in closer agreement
- 1.5 to 1.7 GeV:
 - BnGa agrees well with SAID and with JüBo
 - larger discrepancies between SAID and JüBo
- ⇒ On a good way: improved agreement of the three solutions

Results II: Analysis of new CLAS data: Σ in $\gamma p \rightarrow \eta p$ with the CLAS Collaboration

• "Prediction" from JüBo2015-1 solution (earlier Σ data in $\gamma p \rightarrow \eta p$ included):

Data: CLAS, P. Collins et al. PLB 771, 213 (2017)

PLB 771, 213 (2017)

Fit to new data:

 \Rightarrow P₁₃(1900) not important for this observable in this reaction.

Results III: Extension of the JüBo DCC approach to $\gamma p \to K^+ \Lambda$ (preliminary)

- simultaneous fit of $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+ \Lambda \in \pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$
- \sim 40.000 data points, \sim 500 free parameters
 - \downarrow fit with JURECA supercomputer: parallelization in energy (\sim 300 400 processes)

Kaon-photoproduction

Measurement of recoil polarization easier due to self-analysing decay of hyperons

- → more recoil and beam-recoil data available
- → possibility of finding new, so far missing states? ("missing resonances problem")

Results III: new states found in the analysis of $\gamma p \rightarrow K^+ \Lambda$ (preliminary) simultaneous fit of $\gamma p \rightarrow \pi^0 p$, $\pi^+ n$, ηp , $K^+ \Lambda$ & $\pi N \rightarrow \pi N$, ηN , $K\Lambda$, $K\Sigma$

Previous JüBo analyses of photoproduction:

• resonances included in studies of pion-induced reactions sufficient to describe $\gamma p \to \pi N$, ηN , no additional dynamically generated poles

Inclusion of $\gamma p \rightarrow K^+ \Lambda$ in JüBo ("JuBo2017-1"): 4 additional states

	<i>z</i> ₀ [MeV]	$\frac{\Gamma_{\pi N}}{\Gamma_{\text{tot}}}$	$\frac{\Gamma_{\eta N}}{\Gamma_{\text{tot}}}$	$\frac{\Gamma_{K\Lambda}}{\Gamma_{tot}}$	$\frac{\Gamma_{K\Sigma}}{\Gamma_{tot}}$
N(1730)1/2 ⁻	1731 — <i>i</i> 78.73	1.86 %	1.30 %	56.43 %	1.11 %
N(1900)3/2+	1923 — <i>i</i> 108.4	1.5 %	0.78 %	2.99 %	69.5 %
N(2060)5/2-	1924 — <i>i</i> 100.4	0.35 %	0.15 %	13.47 %	27.02 %
$\Delta(2190)3/2^+$	2191 – <i>i</i> 103.0	33.12 %			3.78 %

- N(1730)1/2⁻: dyn. gen., no equivalent PDG state
- N(1900)3/2⁺: s-channel resonances, seen in many other analyses of kaon photoproduction (e.g. BnGa), 3 stars in PDG
- N(2060)5/2⁻: dynamically generated, 2 stars in PDG, seen e.g. by BnGa
- $\Delta(2190)3/2^+$: dyn. gen., no equivalent PDG state

***: Existence is very likely but further confirmation of decay modes is required **: Evidence of existence is only fair

Results III: impact of new states (preliminary)

• N(1900)3/2⁺:

ightarrow not very likely to see the N(1900)3/2⁺ in $\pi^- p
ightarrow K^0 \Lambda$

→ kaon photoproduction important

JuBo2017-1: new DCC fit including $K^+\Lambda$ photoproduction

Results IV: Disentangling $\overline{D}\Sigma_c^*/\overline{D}^*\Sigma_c$ nature of the P_c^+ states from their decaybehaviourY.-H. Lin, C.-W. Shen, F.-K. Guo, B.-S. Zou, PRD 95, 114017 (2017)

• It is found that π exchange gives the largest decay modes

⇒ More details: talk by Chao-Wei Shen on Thursday

Results IV: Disentangling $\overline{D}\Sigma_c^*/\overline{D}^*\Sigma_c$ nature of the P_c^+ states from their decaybehaviourY.-H. Lin, C.-W. Shen, F.-K. Guo, B.-S. Zou, PRD 95, 114017 (2017)

	Widths (MeV)						
	$P_{c}(4380)$		$P_{c}(4450)$				
Mode	$ar{D}\Sigma^*_c(rac{3-}{2})$	$ar{D}^*\Sigma_c(rac{3-}{2})$	$ar{D}^*\Sigma_c(rac{3-}{2})$	$ar{D}^*\Sigma_c(rac{5+}{2})$			
$\overline{\bar{D}^*\Lambda_c}$	131.3	35.3 1	72.3 1	20.5 1			
$J/\psi p$	3.8	16.6	16.3	4.0			
$\bar{D}\Lambda_c$	1.2	17.0V	41.4 🗸	18.81			
πN	0.06	0.07	0.07	0.2			
$\chi_{c0}p$	0.9	0.004	0.02	0.002			
$\eta_c p$	0.2	0.09	0.1	0.04			
ρN	1.4	0.15	0.14	0.3			
ωp	5.3	0.6	0.5	0.3			
$\bar{D}\Sigma_c$	0.01	0.1	1.2	0.8			
$\bar{D}\Sigma_c^*$			7.7	1.4			
$\bar{D}\Lambda_c\pi$	11.6						
Total	144.3	69.9	139.8	46.4			

 \Rightarrow It is very important to study $P_c \rightarrow \bar{D}^* \Lambda_c$ and $\bar{D} \Lambda_c!$

Results V: Extension of the JüBo DCC approach to hidden charm & beauty

(preliminary)

- \Rightarrow Analysis of super-heavy $N_{c\bar{c}}^{*}$ and $N_{b\bar{b}}^{*}$
- Starting point: extension of the JüBo DCC approach to hidden charm
- $\bar{D}\Lambda_c \to \bar{D}\Lambda_c$, $\bar{D}\Sigma_c$ and $\bar{D}\Sigma_c \to \bar{D}\Sigma_c$
- predictions of cross sections and amplitudes
- search for dynamically generated poles in the complex energy plane of T

Selected results:

- pole in the D_{13} (3/2⁻) wave with z_0 and J^P in agreement with LCHb $P_c(4380)^+$
- pole in F_{15} (5/2⁺) wave: much broader than $P_c(4450)^+$
- ⇒ More details: talk by Chao-Wei Shen on Thursday

Summary

Milestones:

- DCC analysis of $\gamma p \rightarrow K^+ \Lambda$: publication in preparation
- DCC analysis of $\gamma p \to K^+ \Sigma^0$, $K^0 \Sigma^+$: fit in progress
- reactions with hidden charm and hidden beauty: proof of concept calculations, preliminary results for super-heavy N^*

Publications:

- A. V. Anisovich, *et al.*, "The impact of new polarization data from Bonn, Mainz and Jefferson Laboratory on $\gamma p \rightarrow \pi N$ multipoles," Eur. Phys. J. A **52**, 284 (2016) [arXiv:1604.05704 [nucl-th]]
- C. W. Shen, F. K. Guo, J. J. Xie and B. S. Zou, "Disentangling the hadronic molecule nature of the P_c(4380) pentaquark-like structure," Nucl. Phys. A 954, 393 (2016) [arXiv:1603.04672 [hep-ph]].
- P. Collins *et al.*, "Photon beam asymmetry Σ for η and η' photoproduction from the proton," Phys. Lett. B **771**, 213 (2017) [arXiv:1703.00433 [nucl-ex]]
- Y. H. Lin, C. W. Shen, F. K. Guo and B. S. Zou, "Decay behaviors of the P_c hadronic molecules," Phys. Rev. D 95, 114017 (2017) [arXiv:1703.01045 [hep-ph]].

Appendix

Results III: impact of new states (preliminary)

• N(1900)3/2⁺, N(2060)5/2⁻ in σ_{tot} in $\pi^- p \rightarrow K^+ \Sigma^-$:

