Collaborative Research Center CRC 110 "Symmetries and the emergence of structure in QCD"

Status of project B. 11
"Coupled-channel dynamics"

Deborah Rönchen, Bing-Song Zou
CRC 110 General Meeting, Beijing, August 2017

HPC support by Jülich Supercomputing Centre

B11: Coupled-channel dynamics

Goals:

- Extraction of $\mathrm{N}^{*}, \Delta^{*}$ and Y^{*} resonances in pion-, kaon-, photon- and electron induced reactions using a dynamical coupled-channel (DCC) approach
- Analysis of super-heavy $\mathbf{N}_{c \bar{c}}^{*}, \Lambda_{c \bar{c}}^{*}$ and $\mathrm{N}_{b \bar{b}}^{*}, \Lambda_{b \bar{b}}^{*}$

Staff:

- Pls: D. Rönchen (UBO) and B.-S. Zou (ITP)
- PhD students: Y.-H. Lin, C.-W. Shen (ITP)
- Collaborators: F.-K. Guo, J. Haidenbauer (FZJ), U.-G. Meißner (UBO, FZJ)
- External collaborators: M. Döring (GWU), Z.-H. Guo (Hebei Normal University),
H. Haberzettl (GWU), F. Huang (UCAS), K. Nakayama (UGA)

Methods: the Jülich-Bonn (JüBo) dynamical coupled-channels (DCC) aproach

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime \prime}|L S p\rangle+ \\
& \quad \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

- theoretical constraints on the \mathcal{S} matrix: unitarity and analyticity
- resonances $=$ poles on the $2^{\text {nd }}$ Riemann sheet of T
- potentials V constructed from chiral effective \mathcal{L}
- s-channel diagrams: T^{P} genuine resonance states
- t - and u-channel: $T^{N P}$ dynamical generation of poles possible

Methods: the Jülich-Bonn (JüBo) dynamical coupled-channels (DCC) aproach

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions
The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime \prime}|L S p\rangle+ \\
& \quad \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

- theoretical constraints on the \mathcal{S} matrix: unitarity and analyticity

- resonances $=$ poles on the $2^{\text {nd }}$ Riemann sheet of T
- potentials V constructed from chiral effective \mathcal{L}
- s-channel diagrams: T^{P} genuine resonance states
- t - and u-channel: $T^{N P}$ dynamical generation of poles possible

Methods: the Jülich-Bonn (JüBo) dynamical coupled-channels (DCC) aproach

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions
The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime \prime}|L S p\rangle+ \\
& \quad \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

- theoretical constraints on the \mathcal{S} matrix: unitarity and analyticity
- resonances $=$ poles on the $2^{\text {nd }}$ Riemann sheet of T
- potentials V constructed from chiral effective \mathcal{L}
- s-channel diagrams: T^{P} genuine resonance states
- t - and u-channel: $T^{N P}$ dynamical generation of poles possible

Results I: Impact of new polarization data on $\gamma p \rightarrow \pi N$ amplitudes

- recent new data in pion photoproduction: E, G, H, P, T (ELSA), Σ (JLab), Σ (MAMI) \Rightarrow included in the BnGa, JüBo, SAID fits
- compare multipoles before and after the inclusion of the new data
- convergence to a common solution?

Data: CBELSA/TAPS Collaboration.
Predictions: black solid: BnGa, blue dashed: JüBo, red dash-dotted: SAID , green dotted: MAID

Results I: Impact of new polarization data on $\gamma p \rightarrow \pi N$ amplitudes

- recent new data in pion photoproduction: E, G, H, P, T (ELSA), Σ (JLab), Σ (MAMI) \Rightarrow included in the BnGa, JüBo, SAID fits
- compare multipoles before and after the inclusion of the new data
- convergence to a common solution?

Data: CBELSA/TAPS Collaboration.
Fit results: black solid: BnGa, blue dashed: JüBo, red dash-dotted: SAID

Results I: Impact of new polarization data on $\gamma p \rightarrow \pi N$ amplitudes joint effort of the BnGa, JüBo, and SAID groups

With new, precise data:
\rightarrow convergence to a common solution?

- Pairwise variances between two PWAs:
$\operatorname{var}(1,2)=\frac{1}{2} \sum_{i=1}^{16}\left(\mathcal{M}_{1}(i)-\mathcal{M}_{2}(i)\right)\left(\mathcal{M}_{1}^{*}(i)-\mathcal{M}_{2}^{*}(i)\right)$
$\left(\mathcal{M}: \gamma p \rightarrow \pi^{0} p\right.$ multipoles up to $\left.L=4\right)$
- beyond 1.7 GeV : BnGa, JüBo, SAID multipoles now in closer agreement
- 1.5 to 1.7 GeV :
- BnGa agrees well with SAID and with JüBo
- larger discrepancies between SAID and JüBo
\Rightarrow On a good way: improved agreement of the three solutions

Results II: Analysis of new CLAS data: Σ in $\gamma p \rightarrow \eta p$ with the CLAS Collaboration

- "Prediction" from JüBo2015-1 solution (earlier Σ data in $\gamma p \rightarrow \eta p$ included):

Data: CLAS, P. Collins et al. PLB 771, 213 (2017)

Results II: Analysis of new CLAS data: Σ in $\gamma p \rightarrow \eta p$ with the CLAS Collaboration

- Fit to new data:
_- Refit with P13(1900), $\chi^{2} /$ data point $=1.36$
- Refit without P13(1900), $\chi^{2} /$ data point $=1.39$

$\Rightarrow P_{13}(1900)$ not important for this observable in this reaction.

Results III: Extension of the JüBo DCC approach to $\gamma p \rightarrow K^{+} \Lambda$ (preliminary)

- simultaneous fit of $\gamma p \rightarrow \pi^{0} p, \pi^{+} n, \eta p, K^{+} \Lambda \& \pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$
- ~ 40.000 data points, ~ 500 free parameters
\square fit with JURECA supercomputer: parallelization in energy ($\sim 300-400$ processes)

Kaon-photoproduction

Measurement of recoil polarization easier due to self-analysing decay of hyperons
\rightarrow more recoil and beam-recoil data available
\rightarrow possibility of finding new, so far missing states? ("missing resonances problem")
Recent CLAS data on $\Sigma, T, \mathbf{O}_{\mathrm{x}}, \mathrm{O}_{\mathbf{z}}$ for $\gamma p \rightarrow K \Lambda, K \Sigma$ (Paterson PRC 93, 065201 (2016)):

Results III: new states found in the analysis of $\gamma p \rightarrow K^{+} \Lambda$ (preliminary)

simultaneous fit of $\gamma p \rightarrow \pi^{0} p, \pi^{+} n, \eta p, K^{+} \Lambda \& \pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$
Previous JüBo analyses of photoproduction:

- resonances included in studies of pion-induced reactions sufficient to describe $\gamma p \rightarrow \pi N, \eta N$, no additional dynamically generated poles

Inclusion of $\gamma p \rightarrow K^{+} \Lambda$ in JüBo ("JuBo2017-1"): 4 additional states

	$z_{0}[\mathrm{MeV}]$	$\frac{\Gamma_{\pi N}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{\eta N}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{K \Lambda}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{K \Sigma}}{\Gamma_{\text {tot }}}$
$\mathrm{N}(1730) 1 / 2^{-}$	$1731-i 78.73$	1.86%	1.30%	56.43%	1.11%
$\mathrm{~N}(1900) 3 / 2^{+}$	$1923-i 108.4$	1.5%	0.78%	2.99%	69.5%
$\mathrm{~N}(2060) 5 / 2^{-}$	$1924-i 100.4$	0.35%	0.15%	13.47%	27.02%
$\Delta(2190) 3 / 2^{+}$	$2191-i 103.0$	33.12%			3.78%

- $N(1730) 1 / 2^{-}$: dyn. gen., no equivalent PDG state
- $N(1900) 3 / 2^{+}$: s-channel resonances, seen in many other analyses of kaon photoproduction (e.g. BnGa), 3 stars in PDG
- $N(2060) 5 / 2^{-}$: dynamically generated, 2 stars in PDG, seen e.g. by BnGa
- $\Delta(2190) 3 / 2^{+}$: dyn. gen., no equivalent PDG state
$* * *$: Existence is very likely but further confirmation of decay modes is required
**: Evidence of existence is only fair

Results III: impact of new states (preliminary)

- $N(1900) 3 / 2^{+}$:

\rightarrow not very likely to see the $N(1900) 3 / 2^{+}$in $\pi^{-} p \rightarrow K^{0} \Lambda$
\rightarrow kaon photoproduction important

JuBo2017-1: new DCC fit including $K^{+} \Lambda$ photoproduction

Results IV: Disentangling $\bar{D} \Sigma_{c}^{*} / \bar{D}^{*} \Sigma_{c}$ nature of the P_{c}^{+}states from their decay behaviour Y.-H. Lin, C.-W. Shen, F.-K. Guo, B.-S. Zou, PRD 95, 114017 (2017)

- It is found that π exchange gives the largest decay modes
\Rightarrow More details: talk by Chao-Wei Shen on Thursday

Results IV: Disentangling $\bar{D} \Sigma_{c}^{*} / \bar{D}^{*} \Sigma_{c}$ nature of the P_{c}^{+}states from their decay behaviour Y.-H. Lin, C.-W. Shen, F.-K. Guo, B.-S. Zou, PRD 95, 114017 (2017)

Mode	Widths (MeV)			
	$P_{c}(4380)$		$P_{c}(4450)$	
	$\bar{D} \Sigma_{c}^{*}\left(\frac{3}{2}-\right)$	$\bar{D}^{*} \Sigma_{c}\left(\frac{3}{2}-\right)$	$\bar{D}^{*} \Sigma_{c}\left(\frac{3}{2}-\right)$	$\bar{D}^{*} \Sigma_{c}\left(\frac{5}{2}+\right)$
$\bar{D}^{*} \Lambda_{c}$	131.3 V	35.3 V	72.3 V	20.5 V
$J / \psi p$	3.8	16.6	16.3	4.0
$\bar{D} \Lambda_{c}$	1.2	17.0 V	41.4 V	18.8V
πN	0.06	0.07	0.07	0.2
$\chi_{c 0} p$	0.9	0.004	0.02	0.002
$\eta_{c} p$	0.2	0.09	0.1	0.04
ρN	1.4	0.15	0.14	0.3
ωp	5.3	0.6	0.5	0.3
$\bar{D} \Sigma_{c}$	0.01	0.1	1.2	0.8
$\bar{D} \Sigma_{c}^{*}$. .	\ldots	7.7	1.4
$\bar{D} \Lambda_{c} \pi$	11.6
Total	144.3	69.9	139.8	46.4

\Rightarrow It is very important to study $P_{c} \rightarrow \bar{D}^{*} \Lambda_{c}$ and $\bar{D} \Lambda_{c}$!

Results V: Extension of the JüBo DCC approach to hidden charm \& beauty

 (preliminary)\Rightarrow Analysis of super-heavy $\mathbf{N}_{c \bar{c}}^{*}$ and $\mathbf{N}_{b \bar{b}}^{*}$

- Starting point: extension of the JüBo DCC approach to hidden charm
- $\bar{D} \Lambda_{c} \rightarrow \bar{D} \Lambda_{c}, \bar{D} \Sigma_{c}$ and $\bar{D} \Sigma_{c} \rightarrow \bar{D} \Sigma_{c}$
- predictions of cross sections and amplitudes
- search for dynamically generated poles in the complex energy plane of T

Selected results:

- pole in the $D_{13}\left(3 / 2^{-}\right)$wave with z_{0} and J^{P} in agreement with LCHb $P_{c}(4380)^{+}$
- pole in $F_{15}\left(5 / 2^{+}\right)$wave: much broader than $P_{c}(4450)^{+}$
\Rightarrow More details: talk by Chao-Wei Shen on Thursday

Summary

Milestones:

- DCC analysis of $\gamma p \rightarrow K^{+} \Lambda$: publication in preparation
- DCC analysis of $\gamma p \rightarrow K^{+} \Sigma^{0}, K^{0} \Sigma^{+}$: fit in progress
- reactions with hidden charm and hidden beauty: proof of concept calculations, preliminary results for super-heavy N^{*}

Publications:

- A. V. Anisovich, et al., "The impact of new polarization data from Bonn, Mainz and Jefferson Laboratory on $\gamma p \rightarrow \pi N$ multipoles," Eur. Phys. J. A 52, 284 (2016) [arXiv:1604.05704 [nucl-th]]
- C. W. Shen, F. K. Guo, J. J. Xie and B. S. Zou, "Disentangling the hadronic molecule nature of the $P_{c}(4380)$ pentaquark-like structure," Nucl. Phys. A 954, 393 (2016) [arXiv:1603.04672 [hep-ph]].
- P. Collins et al., "Photon beam asymmetry Σ for η and η^{\prime} photoproduction from the proton," Phys. Lett. B 771, 213 (2017) [arXiv:1703.00433 [nucl-ex]]
- Y. H. Lin, C. W. Shen, F. K. Guo and B. S. Zou, "Decay behaviors of the P_{c} hadronic molecules," Phys. Rev. D 95, 114017 (2017) [arXiv:1703.01045 [hep-ph]].

Appendix

Results III: impact of new states (preliminary)

- $\mathrm{N}(1900) 3 / 2^{+}, \mathrm{N}(2060) 5 / 2^{-}$in $\sigma_{\text {tot }}$ in $\pi^{-} p \rightarrow K^{+} \Sigma^{-}$:

JuBo2017-1: new DCC fit including $K^{+} \Lambda$ photoproduction
JuBo2016-3.1 and 3.2: analysis of new CLAS data: Σ in $\gamma p \rightarrow \eta p$ (PLB 771, 213 (2017)), kaon photo data not included

- $\Delta(2190) 3 / 2^{+}$in πN PW:

