Collaborative Research Center 110

"Symmetries and the Emergence of Structure in QCD"

Status of the Project B.10 Partial Wave Analysis

U. Thoma, U. Wiedner

Universities of Bonn, Bochum, München and FZJ, Germany IHEP, ITP, CAS, Peking University, Beijing, China

People involved

	Bochum	Bonn	
Pls	Ulrich Wiedner	Ulrike Thoma	
Senior Scientists	Bertram Kopf	Andrey Sarantsev Victor Nikonov Alexei Anisovich	(75%) (75%) (50%)
Postdocs	Malte Albrecht Xiaoshuai Qin		
Master-students	lman Keshk, Meike Küßner Jan Reher		
Guests		Maxim Matveev Igor Denisenkov	
	⇔ PAWIAN	⇔ Bonn-Gatchina-PWA	

Collaborators: Eberhard Klempt (BnGa-group, Bonn), Volker Burkert (JLab),

Results: Baryon Spectroscopy

- A few examples -

Method: Bonn-Gatchina Partial Wave Analysis

Aim: - Extraction of resonances and their properties from the data
 ⇒ Reach a good understanding of the bound states of QCD in the non-perturbative regime

Multi-channel partial wave analysis

- relativistically invariant formalism
- s-channel resonances: relativistic Breit-Wigner-, Flatte-, K-Matrix ampl., N/D-method
- t-, u-channel amplitudes: exchange of Regge-trajectories

Event based maximum likelihood fit for multibody final states

all correlations between the variables taken into account properly

Systematics in the spectrum = ?

SU(6)xO(3)-Symmetry ?

... or e.g. :

meson-baryon dynamics ...

Analysis of data from Crystal Barrel/TAPS at ELSA and other labs

Investigated reactions:

within CHC 110
$$\leftrightarrow$$
 additional data set included:
 $\underline{\gamma p} \rightarrow p\pi^{+}\pi^{-}: \frac{d\sigma}{d\Omega}, I^{s}, I^{c}$ (CLAS, JLab), $\underline{\gamma p} \rightarrow p\pi^{0}\pi^{0}: T, P, H, ...$ (CB, ELSA)
 $\pi^{-}p \rightarrow n\pi^{+}\pi^{-}, p\pi^{-}\pi^{0}: \frac{d\sigma}{d\Omega}$ (HADES, GSI)
 $\underline{\gamma p} \rightarrow p\eta: T, P, H, E, G$ (CB, ELSA), $\frac{d\sigma}{d\Omega}, \Sigma, F$ (A2, MAMI), Σ (CB, ELSA, CLAS, JLab)
 $\underline{\gamma p} \rightarrow p\eta': \frac{d\sigma}{d\Omega}$ (CLAS, JLab / A2, MAMI), Σ (GRAAL / A2, MAMI)

photoproduction off the neutron:

$$\begin{split} &\gamma n \rightarrow K^0 \Lambda : \frac{d\sigma}{d\Omega} \text{ (CLAS, JLab)} \quad \gamma n \rightarrow n\eta : \frac{d\sigma}{d\Omega}, E \text{ (A2,MAMI)} \quad \vec{\gamma} \vec{n} \rightarrow \pi^- p : E \text{ (CLAS, JLab)} \\ &\text{Existing } K^- \text{-beam -data: First fits to investigate of } \Lambda^* \text{- and } \Sigma^* \text{-resonances:} \\ &K^- p \rightarrow K^- p, \quad K^- p \rightarrow K^0 n, \quad K^- p \rightarrow \pi^0 \Lambda, \eta \Lambda, \quad K^- p \rightarrow \pi^0 \Sigma^0, \quad K^- p \rightarrow \pi^\pm \Sigma^\mp, \quad \dots \end{split}$$

Results I: Single meson photoproduction off the proton

 π -Photoproduction: EPJA 52 (2016), 284, in collaboration with project B11 \longrightarrow Deborah

 $\gamma p
ightarrow p\eta$:

- Isospin selective: only N* contribute
- ullet Investigation of resonances with small πN -coupling

⇔ Differential cross sections, beam asymmetries included in the different PWAs ⇔ Not enough information to fix the contributing amplitudes

Results I: $\vec{\gamma}\vec{p} ightarrow p\eta -$ Polarization observables -

— new BnGa-fit : Determination of precise $p\eta$ -branching ratios for resonances indications for a new resonance (no PDG entry) at 2200 MeV

$ec{\gamma}ec{p} ightarrow p\eta ~~-$ Results including new data on E,~G,~T,~P,~H-

Determination of $p\eta$ -branching ratios for various resonances, e.g. :

	$N(1535)1/2^-$	$N(1650)1/2^-$	$N(1710)1/2^+$	$N(1720)3/2^+$
BnGa	0.42±0.04	0.32±0.04	0.27±0.09	0.03±0.02
PDG	0.42±0.10	0.05 - 0.15	0.10 - 0.30	0.021±0.014

₩

Large and heavily discussed difference in the $p\eta$ -branching ratio of N(1535)1/2⁻ and N(1650)1/2⁻ now significantly reduced

\Rightarrow Hints for a new resonance around 2200 MeV with J^P=5/2⁻

Presently: Adding new $\frac{d\sigma}{d\Omega}$ (MAMI), Σ (CLAS, CB, ELSA) -data

Results II: Analysis of photoproduction data off the neutron

Analysis of: $\gamma n \to p\pi^- (\frac{d\sigma}{d\Omega}, \Sigma, T, P, E), \gamma n \to n\pi^0 (\frac{d\sigma}{d\Omega}, \Sigma), \gamma n \to n\eta (\frac{d\sigma}{d\Omega}, \Sigma, E),$ $\gamma n \to K^0 \Lambda, K^+ \Sigma^- (\frac{d\sigma}{d\Omega})$

Event based maximum likelihood fit

 \leftrightarrow takes all the correlations between the variables properly into account

• $\Delta(1910)1/2^+$, $\Delta(1920)3/2^+$, $\Delta(1905)5/2^+$, $\Delta(1950)7/2^+$

in average: negligible decay fraction into: $N(1520)3/2^{-}\pi, N(1535)1/2^{-}\pi, N(1680)5/2^{+}\pi \quad (L \neq 0\text{-resonances})$

• N(1880)1/2⁺, N(1900)3/2⁺, N(2000)5/2⁺, N(1990)7/2⁺

in average: 23% decays into:

 $N(1520)3/2^{-}\pi, N(1535)1/2^{-}\pi, N(1680)5/2^{+}\pi, N\sigma \quad (L \neq 0\text{-resonances})$

V. Sokhoyan et al. (CBELSA/TAPS-collaboration), EPJA 51 (2015) 95 A. Thiel et al. (CBELSA/TAPS-collaboration), PRL 114 (2015) 091803

... Why ?

Results III: $\gamma p \rightarrow p \pi^0 \pi^0 - A$ possible interpretation –

• $\Delta(1910)1/2^+$, $\Delta(1920)3/2^+$, $\Delta(1905)5/2^+$, $\Delta(1950)7/2^+$

Spacial wave function:

$$S = \frac{1}{\sqrt{2}} \cdot \left[\left(\phi_{0s}(\vec{\rho}) \ \times \ \phi_{0d}(\vec{\lambda}) \ \right) + \left(\phi_{0d}(\vec{\rho}) \ \times \ \phi_{0s}(\vec{\lambda}) \ \right) \right]^{L=2}$$

• $N(1880)1/2^+$, $N(1900)3/2^+$, $N(2000)5/2^+$, $N(1990)7/2^+$

Spacial wave function:

$$M_{S} = \frac{1}{\sqrt{2}} \cdot \left[\left(\phi_{0s}(\vec{\rho}) \times \phi_{0d}(\vec{\lambda}) \right) - \left(\phi_{0d}(\vec{\rho}) \times \phi_{0s}(\vec{\lambda}) \right) \right]^{L=2}$$
$$M_{A} = \left[\left(\phi_{0p}(\vec{\rho}) \times \phi_{0p}(\vec{\lambda}) \right) \right]^{L=2} \Rightarrow \text{One of the excitations transfers}$$
into the $L = 1$ - intermediate resonance!

 \rightarrow additional information from polarisation observables needed $\gamma p \rightarrow p \pi^0 \pi^0$ -T, P, H (CBELSA/TAPS), $\gamma p \rightarrow p \pi^+ \pi^-$ -data (CLAS) presently included in PWA

The 20'plet:

$$\boldsymbol{A} = \left[\left(\phi_{0p}(\vec{\rho}) \times \phi_{0p}(\vec{\lambda}) \right) \right]^{L=1}$$

Wulti-meson final states needed! + production in cascade decays / different production processes

CLAS data (preliminary) included in the event based max. likelihood fit

Data (only small subset shown): E.N.Golovach, V.D. Burkert, V.I. Mokeev, E. Pasyuk, and the CLAS Collaboration

First fits done, studies ongoing

Strong $N\rho$ -decay modes (very preliminary) for:

 $\begin{array}{lll} N(1720)3/2^+ & N(1880)1/2^+ & N(1895)1/2^- & N(1875)3/2^- & N(2120)3/2^- \\ \Delta(1620)1/2^- & \Delta(1750)1/2^+ & \Delta(1900)1/2^- & \Delta(1905)5/2^+ \end{array}$

- at low energies $\gamma p \rightarrow \Delta^{++} \pi^- \text{ dominating}$
- at high energies $\gamma p
 ightarrow N
 ho$ dominating
 - \Leftrightarrow Strong background contributions compared to $\gamma p
 ightarrow p \pi^0 \pi^0$
 - \Leftrightarrow Access to $N^*/\Delta^* o p
 ho$
 - ⇔ Combined analysis: Fix isospin of contributing resonances

Linearly polarized photons, transversally polarized target looking at quasi-two-body kinematics:

Data: T. Seifen et al. (CBELSA/TAPS-collaboration)

Results IV: A different production mechanism: $\psi' ightarrow ar{p} p \pi^0$

• Δ -resonances suppressed in $\psi(3698) \rightarrow p \bar{p} \pi^0$ - isospin -

\Rightarrow larger sensitivity on N*-resonances

	mass	width	sign.
$N(1440)1/2^+$	$1390^{+11}_{-21}{}^{+21}_{-30}$	$340^{+46}_{-40}{}^{+70}_{-156}$	11.5σ
$N(1520)3/2^{-}$	1510^{+3+11}_{-7-9}	115^{+20+0}_{-15-40}	5.0σ
$N(1535)1/2^{-}$	1535^{+9+15}_{-8-22}	120^{+20+0}_{-20-42}	9.3σ
$N(1650)1/2^{-}$	1650^{+5+11}_{-5-30}	$150^{+21}_{-22}{}^{+14}_{-50}$	12.2σ
$N(1720)3/2^+$	$1700^{+30}_{-28}{}^{+32}_{-35}$	$450^{+109}_{-94}{}^{+149}_{-44}$	9.6σ
$P \Rightarrow$ missing: e.g.	N(1875)3/2 , N	(1880)1/2 ⁺ , N(19	00)3/2+.
$N(2300)1/2^+$	$2300^{+40+109}_{-30-0}$	$340^{+30+110}_{-30-58}$	15.0σ
$N(2570)5/2^{-}$	$2570^{+19}_{-10}{}^{+34}_{-10}$	$250^{+14}_{-24}{}^{+69}_{-21}$	11.7σ

- \Rightarrow 2 new resonances observed
- ⇒ even as interesting: Why is there a mass gap??

?'

 \Rightarrow Specific resonances with certain properties suppressed in ψ -decays?

BES: M. Ablikim, PRL110, 022001 (2013)

Results IV: A different production mechanism: $\psi' ightarrow ar{p} p \pi^0$

• Δ -resonances suppressed in $\psi(3698) \rightarrow p \bar{p} \pi^0$ - isospin -

\Rightarrow larger sensitivity on N*-resonances

mass	width	sign.
$1390^{+11}_{-21}{}^{+21}_{-30}$	$340^{+46+70}_{-40-156}$	11.5σ
1510^{+3+11}_{-7-9}	115^{+20+0}_{-15-40}	5.0σ
1535^{+9+15}_{-8-22}	120^{+20+0}_{-20-42}	9.3σ
1650^{+5+11}_{-5-30}	$150^{+21}_{-22}{}^{+14}_{-50}$	12.2σ
$1700^{+30}_{-28}{}^{+32}_{-35}$	$450^{+109}_{-94}{}^{+149}_{-44}$	9.6σ
. N(1875)3/2 , N	(1880)1/2 ⁺ , N(19	00)3/2 ⁺
$2300^{+40+109}_{-30-0}$	$340^{+30+110}_{-30-58}$	15.0σ
$2570^{+19}_{-10}^{+34}_{-10}$	250^{+14+69}_{-24-21}	11.7σ
	$\begin{array}{r} \mbox{mass} \\ 1390^{+11}_{-21} {}^{+21}_{-30} \\ 1510^{+3}_{-7-9} \\ 1535^{+9}_{-8-22} \\ 1650^{+5}_{-8-22} \\ 1650^{+5}_{-5-30} \\ 1700^{+30}_{-28-35} \\ . \mbox{N(1875)3/2}^{-}, \m$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- \Rightarrow 2 new resonances observed
- ⇒ even as interesting: Why is there a mass gap??

2

 \Rightarrow Specific resonances with certain properties suppressed in ψ -decays?

Results II: Meson Spectroscopy

PAWIAN

- · Development of a software package with the aim
 - to provide user-friendly and generic PWA tools
 - to support a wide range of physics cases to be studied in hadron spectroscopy experiments
- PAWIAN (Partial Wave Interactive Analysis Package)
 - already in good shape
 - several analyses of Crystal Barrel (LEAR) and BESIII data \leftrightarrow PhD and master theses

BESIII:

- $J/\psi \rightarrow \phi \pi \pi, \phi K \bar{K}, \phi \eta \eta, \omega \pi \pi, \omega K \bar{K}, \phi \phi \gamma, \omega \omega \gamma$
- $\psi(2S) \rightarrow \chi_{cJ}\gamma, \ \chi_{cJ} \rightarrow \pi\pi, K^+K^-, K^+K^-\eta, K^+K^-\pi\pi, \pi\pi\eta$
- currently in preparation for publication:

$$J/\psi
ightarrow \omega \omega \gamma \ \psi(2S)
ightarrow \chi_{c1} \gamma
ightarrow (K^+ K^- \eta) \gamma \ e^+ e^-
ightarrow (e^+ e^-) \gamma \gamma
ightarrow (e^+ e^-) K^+ K^-$$

Crystal Barrel (LEAR):

- $\bar{p}p \rightarrow K\bar{K}\pi, \pi\pi\eta, \omega\pi\pi, \omega\pi\eta, \pi\pi\eta\eta$
- $ar{p}p
 ightarrow \omega\pi$: Eur.Phys.J. C75 (2015) no.3, 124

- Full hypotheses and other input settings via configuration files
 - Formalisms (Canonical, Helicity, Rarita Schwinger)
 - Dynamics (Breit Wigner, Flatte, K-matrix, etc.)
- Event based maximum likelihood fit, minimization via Minuit2
- Multithreading and networking supported
- Possibility to analyze channels with an arbitrary number of final state mesons and photons
- Support for various initial reactions: $\bar{p}p$ and e^+e^- -annihilation, $\pi\pi$ -scattering processes, decay of isolated resonances
- Support of coupled channel analyses
- Baryon channels seem to work fine but still tests needed
- Event generator, histogramming, analysis tools, ...

Currently: Replacement of standard phasespace factor by Chew-Mandelstam function ↔ Basdevant, Berger: PRD19(1979) 239 ⇔ Analyticity, continuation into the complex plane

PAWIAN: Current Activities on Unitarity and Analyticity

- Coupled channel PWA of suitable channels including $\pi\pi$ -scattering data and K-/T-matrix formalism with Chew-Mandelstam functions
- Proof of principle with coupled channel analysis
 - $J/\psi
 ightarrow \omega \pi^0 \pi^0$ and $J/\psi
 ightarrow \omega K^+ K^-$
 - I=0 S-wave scattering data: $\pi\pi o \pi\pi, Kar{K}, \eta\eta, \eta\eta'$
 - I=0 D-wave scattering data: $\pi\pi
 ightarrow \pi\pi, Kar{K}, \eta\eta$
 - I=1 P-wave scattering data: $\pi\pi \to \pi\pi$
 - I=1 F-wave scattering data: $\pi\pi \to \pi\pi$
 - K-matrix description for f_0, f_2, ρ_0 and ρ_3 contributions with a few number of poles and channels
 - additional contributions: $b_1^0 \ o \ \omega \pi^0$, $K_1^\pm \ o \ K^\pm \omega$
- · First fits lead to reasonable preliminary results
 - Good agreement between data and fitted result
 - Further contributions need to be studied

• $J/\psi \rightarrow \omega K^+ K^-$:

 $\pi\pi \rightarrow \pi\pi$ I=0, S-Wave:

U. Thoma, U. Wiedner: - Status of the Project B.10, Partial Wave Analysis

PAWIAN: Current Activities on Unitarity and Analyticity

- Coupled channel PWA of suitable channels including $\pi\pi$ -scattering data and K-/T-matrix formalism with Chew-Mandelstam functions
- · Proof of principle with coupled channel analysis
 - $J/\psi
 ightarrow \omega \pi^0 \pi^0$ and $J/\psi
 ightarrow \omega K^+ K^-$
 - I=0 S-wave scattering data: $\pi\pi o \pi\pi, K\bar{K}, \eta\eta, \eta\eta'$
 - I=0 D-wave scattering data: $\pi\pi
 ightarrow \pi\pi, K\bar{K}, \eta\eta$
 - I=1 P-wave scattering data: $\pi\pi \to \pi\pi$
 - I=1 F-wave scattering data: ππ → ππ
 - K-matrix description for f_0, f_2, ρ_0 and ρ_3 contributions with a few number of poles and channels
 - additional contributions: $b_1^0 \ o \ \omega \pi^0, \, K_1^\pm \ o \ K^\pm \omega$
- First fits lead to reasonable preliminary results
 - Good agreement between data and fitted result
 - Further contributions need to be studied

Next step: Inclusion of Chew-Mandelstam function for instable particles \leftrightarrow involved numerical calculations

↔ Basdevant, Berger: PRD19(1979) 239

Publications

- A. V. Anisovich et al., "Neutron helicity amplitudes," accepted for publication in PRC
- A. V. Anisovich *et al.*, "Strong Evidence for Nucleon Resonances near 1900 MeV," Phys. Rev. Lett. **119** (2017) no.6, 062004.
- A. V. Anisovich *et al.*, " $N^* \rightarrow N\eta'$ decays from photoproduction of η' -mesons off protons," Phys. Lett. B **772** (2017) 247
- A. V. Anisovich, V. Burkert, E. Klempt, V. A. Nikonov, A. V. Sarantsev and U. Thoma, "Scrutinizing the evidence for N(1685)," Phys. Rev. C 95 (2017), 035211
- A. V. Anisovich *et al.*, BnGa in collaboration with project B11 (+SAID, MAID) "The impact of new polarization data from Bonn, Mainz and Jefferson Laboratory on $\gamma p \rightarrow \pi N$ multipoles," Eur. Phys. J. A **52** (2016), 284

• 2016/2

Combined fits (BnGa) of $J/\psi \rightarrow K^+K^-\pi^0$, $J/\psi \rightarrow K^+K^0\pi^-$ Preparation of BnGa-code for $J/\psi(\psi') \rightarrow \gamma PSPS$ Combined analysis of $\gamma p \rightarrow p\pi^0\pi^0$ and $\gamma p \rightarrow p\pi^+\pi^-$ Analysis of further polarization data becoming available Developments to include electroproduction Extension of PAWIAN-software to support coupled channel analyses (different production mechanisms)

• 2017

 $J/\psi(\psi') \rightarrow \gamma PSPS, p\bar{p} \rightarrow 3PS, \pi\pi$ -scattering Analysis of further polarization data becoming available First fits including electroproduction Implementation of theoretical constrains (Roy, Roy-Steiner) Developments to include $J/\psi, \psi' \rightarrow p\bar{p}PS$ PAWIAN: Develoments for inclusion of additional channels Implementation, optimization of parallel computing Comparison of BnGa and PAWIAN results $\sqrt{}$ (A. Sarantsev + I. Denisenkov) $\sqrt{}$ (A. Sarantsev + I. Denisenkov) work in progress $\sqrt{}$ + work in progress $\sqrt{}$

 $\sqrt{}$ + work in progress $\sqrt{}$ + work in progress $\sqrt{}$ + work in progress X $(\sqrt{})$ $(\sqrt{})$ $(\sqrt{})$ $(\sqrt{})$ X

BnGa: Baryon Spectroscopy = present highest priority $\ \leftrightarrow$ Inclusion of additional data

Thank you for your attention