Project A.8: Charmless Exclusive B Decays

M. Beneke (TU München)
"CRC 110 General Meeting", Beijing, August 29-31, 2017

M. Beneke, C.-D. Lü (PIs)
C. Bobeth (TUM), J.-B. Liu (IHEP/CAS), R. Szafron (TUM) (Postdocs)
C. Wang (IHEP/CAS), Y.-B. Wei (TUM, on exchange from IHEP/CAS), Q.-A. Zhang (IHEP/CAS), S.-H. Zhou (just moved to Inner Mongolia U. as lecturer) (PhD students)

TECHNISCHE UNIVERSITAT MUNCHEN

CRC110, August 29, 2017

Methodology

"Charmless exclusive B decays" means: final state with energetic particles $E \sim \mathcal{O}\left(m_{B}\right)$, initial state with heavy quark and soft stuff.

$$
B \rightarrow \pi \ell \nu, \gamma \ell \nu, V \gamma, K^{(*)} \ell \ell, M_{1} M_{2}, M_{1} M_{2} M_{3}, X_{u}(\mathrm{jet}) \ell \nu, X_{s}(\mathrm{jet}) \gamma, \ldots
$$

- High-energy physics technology of collinear factorization, soft-collinear effective theory (SCET) [originally developed for this purpose!], renormalization group.
- But contrary to collinear factorization in high-energy scattering (DIS, DY, $\gamma^{*} \gamma^{*} \pi$, pion form factor), soft physics does not cancel at leading power.
- Isolate strong coupling physics from calculable weak coupling physics $\left[\alpha_{s}\left(m_{b}\right)\right.$, $\left.\alpha_{s}\left(\sqrt{m_{b} \Lambda}\right) \ll 1\right]$.
Expansion in Λ / m_{b} and α_{s} at the hard $\left(m_{b}\right)$ and hard-collinear scale $\left(\sqrt{m_{b} \Lambda}\right)$.

$$
\mathcal{L}_{\mathrm{eff}}=-\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p b} V_{p D}^{*}\left(C_{1} \mathcal{O}_{1}+C_{2} \mathcal{O}_{2}+\sum_{i=\mathrm{pen}} C_{i} \mathcal{O}_{i, \mathrm{pen}}\right) \quad \Rightarrow \quad\langle f| \mathcal{O}|\bar{B}\rangle_{\mathrm{QCD}+\mathrm{QED}}
$$

Project A. 8 Overview

(I) Phenomenology of (quasi-) two-body charmless final states

- Analysis of complete sets of final states, NNLO phenomenology with QCD factorization
- Dedicated CP violation studies
(II) $B \rightarrow \gamma \ell \nu$ and the inverse moment λ_{B} of the B-meson light-cone distribution amplitude (LCDA)
- NLO QCD sum rule analysis of λ_{B}
- Factorization in SCET at next-to-leading power

III Electromagnetic corrections to B decays

- Factorization theorem for QED corrections to charmless two-body decays and computation of the leading logarithms
- Electromagnetic corrections to $B \rightarrow \ell \ell, B \rightarrow K^{(*)} \ell \ell$

IV Three-body hadronic B decays

- QCD factorization and hadronic models

I. Phenomenology of (quasi-) two-body charmless final states

Status of NNLO QCD factorization calculations

$$
\begin{aligned}
&\left\langle M_{1} M_{2}\right| C_{i} O_{i}|\bar{B}\rangle_{\mathcal{L}_{\text {eff }}}=\sum_{\text {terms }} C\left(\mu_{h}\right) \times\{F_{B \rightarrow M_{1}} \times \underbrace{T^{\mathrm{I}}\left(\mu_{h}, \mu_{s}\right)}_{1+\alpha_{s}+\ldots} \star f_{M_{2}} \Phi_{M_{2}}\left(\mu_{s}\right) \\
&+f_{B} \Phi_{B}\left(\mu_{s}\right) \star[\underbrace{T^{\mathrm{II}}\left(\mu_{h}, \mu_{I}\right)}_{1+\ldots} \star \underbrace{J^{\mathrm{II}}\left(\mu_{I}, \mu_{s}\right)}_{\alpha_{s}+\ldots}] \star f_{M_{1}} \Phi_{M_{1}}\left(\mu_{s}\right) \star f_{M_{2}} \Phi_{M_{2}}\left(\mu_{s}\right)\} \\
&+1 / m_{b} \text {-suppressed terms }
\end{aligned}
$$

Status	2-loop vertex corrections (T_{i}^{l})	1-loop spectator scattering ($T_{i}^{\prime \prime}$)
Trees	[GB 07, 09] [Beneke, Huber, Li 09]	[Beneke, Jäger 05] [Kivel 06] [Pilipp 07]
Penguins	in progress	[Beneke, Jãger 06] [Jain, Rothstein, Stewart 07]

from G. Bell [FPCP 2010]

Missing NNLO penguin amplitude partially computed (tree operator matrix elements) [Bell, MB, Huber, Li, 2015], penguin operator matrix elements still in progress.
\Rightarrow Global QCDF phenomenology project not yet started.

Analysis of two-body decays in other approaches [C.D. Liu and collaborators]

"Topological amplitudes"

$$
T, C, P, P_{\mathrm{EW}}, S, E, P A, \ldots
$$

Factorization relies on Λ_{QCD} expansion, usually leading order only in $\Lambda_{\mathrm{QCD}} / m_{b}$. $\mathrm{SU}(2), \mathrm{SU}(3)$ [Zeppenfeld, 1981] light flavour symmetries provide amplitude relations. Usually leading order only in $m_{q} \ll \Lambda_{\mathrm{QCD}}$

Can combine som of this information in topological amplitude fits to data.

- Charmless $B_{s} \rightarrow V V$ Decays in Factorization-Assisted Topological-Amplitude Approach [C. Wang, Q.-A. Zhang, Y. Li, C.-D. Lü, 1701.01300]
- Analysis of Charmless Two-body B decays in Factorization Assisted Topological Amplitude Approach [S.-H. Zhou, Q.-A. Zhang, W.-R. Lyu, C.-D. Lü, 1608.02819]
- Global Analysis of Charmless B Decays into Two Vector Mesons in Soft-Collinear Effective Theory [C. Wang, Q.-A. Zhang, Y. Li, C.-D. Lui, 1708.04861]

Global fits to PP, PV [double no. of amplitudes], VV [triple no. of amplitudes, needs polarisation measurements] including B_{s} decays.

Global Fit for all $\mathbf{B} \rightarrow \mathbf{P P}$, VP and PV decays (100 Channels)

35 branching Ratios and $11 \mathbf{C P}$ violation observations data are used for the fit

$$
\begin{array}{cl}
\chi^{C}=0.48 \pm 0.06, & \phi^{C}=-1.58 \pm 0.08, \\
\chi^{C^{\prime}}=0.42 \pm 0.16, & \phi^{C^{\prime}}=1.59 \pm 0.17, \\
\chi^{E}=0.057 \pm 0.005, & \phi^{E}=2.71 \pm 0.13, \\
\chi^{P}=0.10 \pm 0.02, & \phi^{P}=-0.61 \pm 0.02, \\
\chi^{P_{C}}=0.048 \pm 0.003, & \phi^{P_{C}}=1.56 \pm 0.08, \\
\chi^{P_{C}^{\prime}}=0.039 \pm 0.003, & \phi^{P_{C}^{C}}=0.68 \pm 0.08, \\
\chi^{P_{A}}=0.0059 \pm 0.0008, & \phi^{P_{A}}=1.51 \pm 0.09,
\end{array}
$$

Global fit for charmless $B \rightarrow V V$ decays Eur.Phys.J. C77 (2017) 333

18 branching fractions, 20 polarization fractions, 6 relative
phases, and 2 direct $\mathbf{C P}$ asymmetries as input
10 free parameters to be fitted

$$
\begin{gathered}
\chi_{C}^{0}=0.23 \pm 0.05, \quad \phi_{C}^{0}=0.48 \pm 0.29 ; \quad \chi_{E}^{0}=0.082 \pm 0.026, \quad \phi_{E}^{0}=1.69 \pm 0.16 ; \\
\chi_{S}^{0}=0.018 \pm 0.003, \quad \phi_{S}^{0}=1.29 \pm 0.22 ; \quad \chi_{P_{A}}^{0}=0.012 \pm 0.002, \quad \phi_{P_{A}}^{0}=-0.07 \pm 0.18 ; \\
\chi_{P_{A}}^{\|, \perp}=0.0098 \pm 0.0003, \quad \phi_{P_{A}}^{\|, \perp}=-0.21 \pm 0.09 ;
\end{gathered}
$$

The $\chi^{2} /$ d.o.f $=82.0 /(46-10)$ is 2.28 .
Well explanation of the transverse polarization puzzle with minimum number of free parameters.

II. $B \rightarrow \gamma \ell \nu$ and the inverse moment λ_{B} of the B-meson light-cone distribution amplitude (LCDA)

with Y.-B. Wei and V.M. Braun, Y. Ji (U. Regensburg)

Motivation

$$
\begin{aligned}
& \Gamma(\ell \nu) \propto f_{B}^{2}\left(\frac{m_{\ell}}{m_{B}}\right)^{2} \\
& \Gamma(\gamma \ell \nu) \propto f_{B}^{2} \frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\frac{m_{B}}{\lambda_{B}}\right)^{2}
\end{aligned}
$$

No helicity suppression.
Simplest, non-trivial, hard-exclusive B decay when $2 E_{\gamma}=\mathcal{O}\left(m_{b}\right)$.
Involves B meson light-cone distribution amplitude:

$$
\begin{aligned}
& i F_{\text {stat }}(\mu) \Phi_{B+}(\omega, \mu)=\frac{1}{2 \pi} \int d t e^{i t \omega}\langle 0|\left(\bar{q}_{s} Y_{s}\right)\left(t n_{-}\right) \eta_{-} \gamma_{5}\left(Y_{s}^{\dagger} h_{v}\right)(0)\left|\bar{B}_{v}\right\rangle_{\mu} \\
& \frac{1}{\lambda_{B}(\mu)}=\int_{0}^{\infty} \frac{d \omega}{\omega} \Phi_{B+}(\omega, \mu), \quad \sigma_{n}(\mu)=\lambda_{B}(\mu) \int_{0}^{\infty} \frac{d \omega}{\omega} \ln ^{n} \frac{\mu_{0}}{\omega} \Phi_{B+}(\omega, \mu)
\end{aligned}
$$

Crucial quantity for the colour-suppressed tree amplitude in charmless B decays and other exclusive B decays (see III.)

$$
\Gamma(\pi \pi) \propto f_{\pi} \Phi_{\pi}\left[C_{2} F^{B \pi}+C_{1} \frac{\alpha_{s} f_{B} f_{\pi} \Phi_{\pi}}{m_{B} \lambda_{B}}\right]^{2}
$$

Branching fraction for $E_{\gamma}>E_{\gamma, \min } \gg \Lambda_{\mathrm{QCD}}$ is very sensitive to λ_{B}

First significant measurement from BELLE [1504.05831] Expect BELLE II to measure λ_{B}. Hypothetical example:

$$
\operatorname{Br}\left(B^{-} \rightarrow \gamma \ell \bar{\nu}, E_{\gamma}>1.7 \mathrm{GeV}\right)=(2.0 \pm 0.4) \times 10^{-6} \quad \rightarrow \quad \lambda_{B}=228_{-61}^{+76} \mathrm{MeV}
$$

Dominant theoretical uncertainty about equally from σ_{1}, σ_{2} and power-suppressed form factor ξ.

Theoretical description

Hadronic physics contained in

$$
\begin{aligned}
i T_{\nu \mu}(p, q) & =\int \mathrm{d}^{4} x e^{i p x}\langle 0| \mathrm{T}\left\{j_{\mathrm{em}}^{\nu}(x)\left(\bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) b\right)(0)\right\}\left|B^{-}\right\rangle \\
& \equiv i \epsilon_{\mu \nu \rho \sigma} \nu^{\rho} p^{\sigma} F_{V}\left(E_{\gamma}\right)+\left(g_{\mu \nu} v \cdot p-v_{\nu} p_{\mu}\right) \hat{F}_{A}\left(E_{\gamma}\right)+\frac{v_{\nu} v_{\mu}}{v \cdot p} f_{B} m_{B}+p_{\nu} \text {-terms } \\
F_{V}\left(E_{\gamma}\right) & =\underbrace{\frac{Q_{u} m_{B} f_{B}}{2 E_{\gamma} \lambda_{B}(\mu)} R\left(E_{\gamma}, \mu\right)}_{\text {leading power }}+\underbrace{\left[\xi\left(E_{\gamma}\right)+\frac{Q_{b} m_{B} f_{B}}{2 E_{\gamma} m_{b}}+\frac{Q_{u} m_{B} f_{B}}{\left(2 E_{\gamma}\right)^{2}}\right]}_{\text {next-to-leading power }} \\
F_{A}\left(E_{\gamma}\right) & =\frac{Q_{u} m_{B} f_{B}}{2 E_{\gamma} \lambda_{B}(\mu)} R\left(E_{\gamma}, \mu\right)+\left[\xi\left(E_{\gamma}\right)-\frac{Q_{b} m_{B} f_{B}}{2 E_{\gamma} m_{b}}-\frac{Q_{u} m_{B} f_{B}}{\left(2 E_{\gamma}\right)^{2}}+\frac{Q_{\ell} f_{B}}{E_{\gamma}}\right]
\end{aligned}
$$

- R is a radiative correction factor. Known to NLO+NLL
- Both form factors idential to all order at leading power (helicity conservation)
- Next-to-leading power terms parameterized by $\xi\left(E_{\gamma}\right)$. Irreducible uncertainty in determination of λ_{B}.

QCD sum rule calculation of the power-suppressed form factor

Idea [Braun, Khodjamirian, 1210.4453] (similar to $\gamma \gamma^{*} \pi^{0}$ form factor): compute hadronic tensor for negative $p^{2} \sim \mathcal{O}\left(m_{b} \Lambda\right)$ and apply a dispersion relation.

Augments the hard-collinear SCET contributions by a dispersive representation of the soft contribution from $\omega \sim \Lambda^{2} / E_{\gamma}$ and in this way provides a representation of $\xi\left(E_{\gamma}\right)$.

- twist-2, tree-level [Braun, Khodjamirian, 1210.4453]

$$
\xi_{\mathrm{BK}}\left(E_{\gamma}\right)=\frac{Q_{u} f_{B}}{2 E_{\gamma}} \times \frac{m_{B}}{2 E_{\gamma}} \times \hat{\xi}\left(E_{\gamma}\right)
$$

where $\hat{\xi}$ is negative, nearly energy-independent, but depends strongly on λ_{B}.

- twist-2, one-loop [Y. Wang, 1606.03080] treatment of higher-twist not correct
- This project: three-particle B-meson LCDAs, twist-4 two-particle, $1 / m_{b}$ correction, four-particle contributions proportional to quark condensate, better parameterization of the B-meson LCDA.

Following plots show PRELIMINARY (unpublished) results

Appears that $1 / E_{\gamma}$ expansion requires at least $E_{\gamma}>1.5 \mathrm{GeV}$.
λ_{B} analysis forth-coming.

In addition to $B \rightarrow \gamma$ with the same technique the $B \rightarrow \pi$ [Shen, Wei, Liu, 1607.08727] and $B \rightarrow D$ [Wang, Wei, Shen, Lii, 1701.06810] form factors are obtained (up to less complete higher-twist contributions).

III. Electromagnetic corrections to B decays

with C. Bobeth, R. Szafron

Motivation

- Electromagnetic corrections violate isospin symmetry.

Can fake small electroweak penguin amplitudes in charmless B decays

- Large logarithmic enhancements $\ln m_{b}^{2} / \Lambda^{2}, \ln m_{b}^{2} / m_{\ell}^{2}$ possible
- Existing treatment of electromagnetic effects uses traditional soft photon approximation, but the logarithmic structure is more complicated in SCET
- Expected precision of measurements require inclusion of electromagnetic effects, even if small

Factorization theorems for electromagnetic correction don't exist. Theory still needs to be developed.

- Start with the simplest decay $B_{s} \rightarrow \ell^{+} \ell^{-}(+\operatorname{soft} \gamma)$.
- Theory framework: SCET with electromagnetism, fermion masses and power-suppressed interactions

Status of $B_{s} \rightarrow \mu^{+} \mu^{-}$

$$
\begin{aligned}
\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) & =\frac{G_{F}^{2} \alpha^{2}}{64 \pi^{3}} f_{B_{s}}^{2} \tau_{B_{s}} m_{B_{s}}^{3}\left|V_{t b} V_{t s}^{*}\right|^{2} \sqrt{1-\frac{4 m_{\mu}^{2}}{m_{B_{s}}^{2}}} \\
& \times\left\{\left(1-\frac{4 m_{\mu}^{2}}{m_{B_{s}}^{2}}\right)\left|C_{S}-C_{S}^{\prime}\right|^{2}+\left|\left(C_{P}-C_{P}^{\prime}\right)+\frac{2 m_{\mu}}{m_{B_{s}}}\left(C_{10}-C_{10}^{\prime}\right)\right|^{2}\right\}
\end{aligned}
$$

- SM only $C_{10} \Rightarrow$ helicity suppression Sensitive to scalar couplings.
- $\operatorname{LHCb}[1703.05747]\left(3.0_{-0.6}^{+0.7}\right) \times 10^{-9}$ vs. Theory [Bobeth et al., 1311.0903] $(3.65 \pm 0.23) \times 10^{-9}$

Theory

- Includes NNLO QCD, NLO EW matching corrections at EW scale, NNLL renormalization-group evolution including QED logarithms down to the b-quark mass scale
- QED corrections below the m_{b} scale not included, estimated to be 0.3%.
- QCD corrections below the m_{b} scale all contained in the single non-perturbative parameter $f_{B_{s}}$. Known from lattice QCD with 1.5% accuracy.

Electromagnetic correction

Surprise: m_{B} / Λ power-enhanced and logarithmically enhanced, purely virtual correction

$$
\begin{aligned}
i \mathcal{A}= & m_{\ell} f_{B} \mathcal{N} C_{10} \bar{\ell} \gamma_{5} \ell \\
& +\frac{\alpha_{\mathrm{em}}}{4 \pi} Q_{\ell} Q_{q} m_{\ell} m_{B} f_{B_{q}} \mathcal{N} \bar{\ell}\left(1+\gamma_{5}\right) \ell \times\left\{\int_{0}^{1} d u(1-u) C_{9}^{\mathrm{eff}}\left(u m_{b}^{2}\right) \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B+}(\omega)\left[\ln \frac{m_{b} \omega}{m_{\ell}^{2}}+\ln \frac{u}{1-u}\right]\right. \\
& \left.-Q_{\ell} C_{7}^{\mathrm{eff}} \int_{0}^{\infty} \frac{d \omega}{\omega} \phi_{B+}(\omega)\left[\ln ^{2} \frac{m_{b} \omega}{m_{\ell}^{2}}-2 \ln \frac{m_{b} \omega}{m_{\ell}^{2}}+\frac{2 \pi^{2}}{3}\right]\right\}+\ldots
\end{aligned}
$$

The virtual photon probes the B meson structure. Annihilation is "smeared out" over hardcollinear distance $1 / \sqrt{m_{B} \Lambda}$. B-meson LCDA and $1 / \lambda_{B}$ enters.

$$
m_{B} / \lambda_{B} \sim 20 \quad \ln \frac{m_{b} \omega}{m_{\mu}^{2}} \sim 6
$$

Logarithms are not the standard soft logarithms, but due to hard-collinear, collinear and soft regions, involving also soft lepton exchange for the box graph.

Include through the substitution

$$
C_{10} \rightarrow C_{10}+\frac{\alpha_{\mathrm{em}}}{4 \pi} Q_{\ell} Q_{q} \Delta_{\mathrm{QED}}
$$

where

$$
\Delta_{\mathrm{QED}}=(33 \ldots 119)+i(9 \ldots 23)
$$

- Reduction of the branching fraction by

$$
0.3-1.1 \%
$$

Cancellation of a factor of three between the $C_{9}^{\text {eff }}\left(u m_{b}^{2}\right)$ and $C_{7}^{\text {eff }}$ term. Uncertainty entirely due to B-meson LCDA.

- Significantly larger than previously estimated QED correction. QED uncertainty almost as large as other non-parametric uncertainties (1.2\%)
- New SM value for the un-tagged, time-integrated branching fraction (including parameter up-date)

$$
\overline{\mathcal{B}}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}=(3.57 \pm 0.17) \cdot 10^{-9}
$$

IV. Three-body hadronic B decays

FIG. 2. Asymmetries of the number of signal events in bins of the Dalitz plot, $A_{C P}^{N}$, for (a) $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$and (b) $B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$decays. The inset figures show the projections of the number of background-subtracted events in bins of (left) the $m_{\pi+\pi^{-}}^{2}$ variable for $m_{K \pm \pi \mp}^{2}<15 \mathrm{GeV}^{2} / c^{4}$ and (right) the $m_{K+K-\text { low }}^{2}$ variable for $m_{K+K-h i g h}^{2}<15 \mathrm{GeV}^{2} / c^{4}$.
The distributions are not corrected for acceptance.
Contrary to two-body decay large local CP asymmetries.

- Enhanced sensitivity to direct CP violation and CP phases.
- Can the hadronic physics be understood to sufficient degree to make this useful?

Three-body factorization theory $\left(B \rightarrow M_{a} M_{b} M_{c}\right)$

[MB (2006); Stewart (2006); Kränkl, Mannel, Virto,

1505.04111]

- Different factorization theorems and power-counting in different regions of the Dalitz plot
- Central region power-suppression
- Side-bands two-body like but long-distance rescattering in two-meson LCDA and $B \rightarrow$ two meson form factor

$$
\overline{\mathrm{B}} \rightarrow \pi^{+} \pi^{-} \pi^{0}
$$

$$
s_{t, r, 0} \sim m_{B}^{2}
$$

Factorization applies
poutr-s suppresed relatice to 2-body Probatly unrealistce for $m_{b x} 5 \mathrm{Gt}$
[MB (Three-body Workshop, Paris, 2006)]

$$
\begin{aligned}
& s_{t}=\left(p_{ \pm}+p_{0}\right)^{2} \\
& s_{0}=\left(p_{t}+p_{-}\right)^{2}
\end{aligned}
$$

- Contrary to two-body strong interaction phases from long-distance interactions at leading power
\rightarrow can be large
\rightarrow enhanced sensitivity to direct CP violation and CP phases.
- Probably requires a combination of rigorous (factorization) and phenomenological approaches [Klein, Mannel, Virto, Keri Vos, 1708.02047]

Also [Cheng, Chua, 1308.5139; Wang et al. 1402.5501]

Three-body project not yet started. Javier Virto joined TUM July 2017, jointly with MIT until end of 2018, then at TUM.
Project should profit from expertise on low-energy hadron scattering within this CRC.

V. Other results and developments

Other results

- Dispersive approach to the non-factorizable charm-loop contributions to $B \rightarrow K^{(*)} \ell \ell$ (QCD factorization in the Euclidian + resonance constraints) [Bobeth, Chrzaszcz, van Dyk, Virto, 1707.07305]

- Model-independent and specific model studies of New Flavour Physics:
- "Patterns of Flavour Violation in Models with Vector-Like Quarks" [Bobeth, Buras, Celis, Jung, 1609.04783]
- "Yukawa enhancement of Z -mediated new physics in $S=2$ and $B=2$ processes" [Bobeth, Buras, Celis, Jung, 1703.04753]

Other developments

> New (August 2017) Emmy-Noether Junior Research Group at TUM, led by Danny van Dyk
> "Anomalies in semileptonic b-decays as antennas of New Physics"
> + A. Kokulu (PostDoc), N. Gubernari (PhD student)

- Physics focus on strong interaction and New Physics sensitivity from $B \rightarrow D^{(*)} \ell \nu$, $B \rightarrow K^{(*)} \ell \ell, B_{c} \rightarrow D^{0} \ell^{-} \bar{\nu}$, form factors, baryonic semileptonic decays
- Expertise in statistical analysis, author of the EOS flavour observable analysis tool

Complementary to A. 8 research programme and reinforcement of the Flavour Physics group

Group has been associated with the CRC 110

