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Double parton distrbtn of the pion in effective quark 
model

1 Introduction

The distributions of quarks, antiquarks and gluons in nucleons, as measured in the
inclusive deep inelastic scattering of leptons, provides us probably with the largest
portion of quantitative information about strong interactions. Until now only the
evolution of the structure functions from a high value of q2 to even higher values, has
been successfully compared with the data. It is the field of the perturbative QCD,
and its success has been, historically, essential in establishing the validity of the QCD
itself. Unfortunately, the initial conditions for that evolution, namely the leading-
twist distributions at a relatively low normalization point, belong to the field of the
nonperturbative QCD, and the success here is still rather modest.

In this paper we attempt to calculate parton distributions at a low normalization
point in the limit of large number of colours, Nc → ∞. Even though in reality Nc = 3,
the academic limit of large Nc is known to be a useful guideline. At large Nc the
nucleon is heavy and can be viewed as a classical soliton of the pion field [1]. An
example of the dynamical realization of this idea is given by the Skyrme model [2].
However, the Skyrme model is based on an unrealistic effective chiral lagrangian. A
far more realistic effective chiral lagrangian is given by the functional integral over
quarks in the background pion field [3, 4]:

exp (iSeff [π(x)]) =
∫

DψDψ̄ exp
(

i
∫

d4xψ̄(i∂/ − MUγ5)ψ
)

,

U = exp (iπa(x)τa) , Uγ5 = exp (iπa(x)τaγ5) =
1 + γ5

2
U +

1 − γ5

2
U †. (1.1)

Here ψ is the quark field, M is the effective quark mass which is due to the spontaneous
breakdown of chiral symmetry (generally speaking, it is momentum-dependent) and
U is the SU(2) chiral pion field. The effective chiral action given by eq. (1.1) is
known to contain automatically the Wess–Zumino term and the four-derivative Gasser–
Leutwyler terms, with correct coefficients. Therefore, at least the first four terms
of the gradient expansion of the effective chiral lagrangian are correctly reproduced
by eq. (1.1), and chiral symmetry arguments do not leave much freedom to further
modifications. Eq. (1.1) has been derived from the instanton model of the QCD vacuum
[4, 5], which provides a natural mechanism of chiral symmetry breaking and enables
one to express the dynamical mass M and the ultraviolet cutoff Λ intrinsic in eq. (1.1)
through the ΛQCD parameter. The effective chiral theory (1.1) is valid for the values
of the quark momenta up to the ultraviolet cutoff Λ. Therefore, in using eq. (1.1) we
imply that we are computing the parton distributions at the normalization point about
Λ ≈ 600 MeV. It should be mentioned that eq. (1.1) is of a general nature: one need
not believe in instantons and still use eq. (1.1).

An immediate implication of this effective chiral theory is the quark-soliton model
for baryons of ref. [6], which is in the spirit of the earlier works [7, 8] but without
the vacuum instability paradox noticed there. According to the model nucleons can
be viewed as Nc (=3) “valence” quarks bound by a self-consistent hedgehog-like pion
field (the “soliton”) whose energy coincides in fact with the aggregate energy of quarks
from the negative-energy Dirac continuum. Similarly to the Skyrme model large Nc

are needed as an algebraic parameter to justify the use of the mean-field approxima-
tion (like one needs large Z to justify the Thomas–Fermi atom), however the 1/Nc

corrections can be and in some cases are computed [9, 10]. The quark-soliton model of

3

1 Introduction

The distributions of quarks, antiquarks and gluons in nucleons, as measured in the
inclusive deep inelastic scattering of leptons, provides us probably with the largest
portion of quantitative information about strong interactions. Until now only the
evolution of the structure functions from a high value of q2 to even higher values, has
been successfully compared with the data. It is the field of the perturbative QCD,
and its success has been, historically, essential in establishing the validity of the QCD
itself. Unfortunately, the initial conditions for that evolution, namely the leading-
twist distributions at a relatively low normalization point, belong to the field of the
nonperturbative QCD, and the success here is still rather modest.

In this paper we attempt to calculate parton distributions at a low normalization
point in the limit of large number of colours, Nc → ∞. Even though in reality Nc = 3,
the academic limit of large Nc is known to be a useful guideline. At large Nc the
nucleon is heavy and can be viewed as a classical soliton of the pion field [1]. An
example of the dynamical realization of this idea is given by the Skyrme model [2].
However, the Skyrme model is based on an unrealistic effective chiral lagrangian. A
far more realistic effective chiral lagrangian is given by the functional integral over
quarks in the background pion field [3, 4]:

exp (iSeff [π(x)]) =
∫

DψDψ̄ exp
(

i
∫

d4xψ̄(i∂/ − MUγ5)ψ
)

,

U = exp (iπa(x)τa) , Uγ5 = exp (iπa(x)τaγ5) =
1 + γ5

2
U +

1 − γ5

2
U †. (1.1)

Here ψ is the quark field, M is the effective quark mass which is due to the spontaneous
breakdown of chiral symmetry (generally speaking, it is momentum-dependent) and
U is the SU(2) chiral pion field. The effective chiral action given by eq. (1.1) is
known to contain automatically the Wess–Zumino term and the four-derivative Gasser–
Leutwyler terms, with correct coefficients. Therefore, at least the first four terms
of the gradient expansion of the effective chiral lagrangian are correctly reproduced
by eq. (1.1), and chiral symmetry arguments do not leave much freedom to further
modifications. Eq. (1.1) has been derived from the instanton model of the QCD vacuum
[4, 5], which provides a natural mechanism of chiral symmetry breaking and enables
one to express the dynamical mass M and the ultraviolet cutoff Λ intrinsic in eq. (1.1)
through the ΛQCD parameter. The effective chiral theory (1.1) is valid for the values
of the quark momenta up to the ultraviolet cutoff Λ. Therefore, in using eq. (1.1) we
imply that we are computing the parton distributions at the normalization point about
Λ ≈ 600 MeV. It should be mentioned that eq. (1.1) is of a general nature: one need
not believe in instantons and still use eq. (1.1).

An immediate implication of this effective chiral theory is the quark-soliton model
for baryons of ref. [6], which is in the spirit of the earlier works [7, 8] but without
the vacuum instability paradox noticed there. According to the model nucleons can
be viewed as Nc (=3) “valence” quarks bound by a self-consistent hedgehog-like pion
field (the “soliton”) whose energy coincides in fact with the aggregate energy of quarks
from the negative-energy Dirac continuum. Similarly to the Skyrme model large Nc

are needed as an algebraic parameter to justify the use of the mean-field approxima-
tion (like one needs large Z to justify the Thomas–Fermi atom), however the 1/Nc

corrections can be and in some cases are computed [9, 10]. The quark-soliton model of

3

Seff =

Effective quark-goldstone boson action 

Double parton distributions 

paper, we perform a systematic analysis of DPS in the modern framework for factorisation

by Collins [65]. We explicitly show how the soft factors relevant for the cross section

can be entirely absorbed into DTMDs or DPDFs, and we derive the resulting evolution

equations in ζ, as well as the ones in µ. We note that a different treatment for collinear

DPS factorisation has been presented in [28], where a separate soft factor appears in the

final factorisation formula.

The starting point of our discussion is an intermediate expression of the DPS cross

section, given in section 2.1 of [29]. The cross section for the production of two sets of

colourless particles involves a term

H1,qq̄ H2,qq̄ F
T
us,q̄q̄(vR)S

−1
qq (vL, vR)Sqq(vL, vR)S

−1
qq (vL, vR)Fus,qq(vL) (3.1)

for the annihilation of two quarks in one proton with two antiquarks in the other proton,

and corresponding terms for the other parton combinations. For definiteness we have only

written down the DPDs for unpolarised partons; polarised terms have the same soft factor.

Hi,qq̄ denotes the squared hard-scattering amplitudes, with appropriate spin projections

(see section 2.2 in [27]) but with the colour structure removed as specified in (4.55) below.

Fus denotes unsubtracted collinear matrix elements, and S is a soft factor. The inverse

of this factor removes contributions of soft gluons from the unsubtracted collinear matrix

elements, so that S−1Fus receives only contributions from collinear gluons. For brevity

we have omitted momentum fraction and position space arguments in (3.1), as well as

renormalisation and factorisation scales and colour indices. Fus is a row vector in colour

space (with one index for each of the four parton legs), and S is a matrix with two times

four indices. The spacelike four-vectors vL and vR denote the directions of Wilson lines

and will be specified later. As discussed in [29, 65], vL and vR have to be chosen such that

the effects of so-called Glauber gluon exchange on the cross section can be subsumed into

the soft and collinear factors in (3.1).

3.1 Collinear matrix elements

In this section, we recall the definitions of unsubtracted DTMDs and DPDFs in terms of

proton matrix elements. These will later be combined with soft factors in order to define

the double parton distributions that appear in the cross section formula.

For two partons a1 and a2, the unsubtracted DTMDs are defined in terms of matrix

elements as [26, 27]

Fus,a1a2(x1, x2,z1,z2,y) = 2p+(x1p
+)−n1 (x2p

+)−n2

∫
dz−1
2π

dz−2
2π

dy− ei(x1z
−
1 +x2z

−
2 )p+

× ⟨p | Oa1(y, z1)Oa2(0, z2) |p⟩ , (3.2)

where ni = 1 if parton number i is a gluon and ni = 0 otherwise. We use light-cone

coordinates w± = (w0 ±w3)/
√
2 and the transverse component w = (w1, w2) for any four-

vector w. The definition (3.2) is natural for a proton moving to the right, i.e. for p3 > 0.

For a left moving proton, i.e. for p3 < 0, one would interchange the roles of plus and minus

coordinates. It is understood that p = 0 in both cases, and that the proton polarisation

– 6 –

is averaged over. Setting z1 = z2 = 0 in (3.2), one obtains DPDFs, which are relevant for

collinear factorisation. As we will discuss later, this changes the ultraviolet behaviour of

the operators.

The operators for quarks in a right moving proton read

Oa(y, z) = q̄
(
y − 1

2z
)
W †(y − 1

2z, vL
)
ΓaW

(
y + 1

2z, vL
)
q
(
y + 1

2z
)∣∣∣

z+=y+=0
(3.3)

with spin projections

Γq =
1
2γ

+ , Γ∆q =
1
2γ

+γ5 , Γj
δq =

1
2 iσ

j+γ5 (j = 1, 2) (3.4)

onto unpolarised quarks (q), longitudinally polarised quarks (∆q) and transversely po-

larised quarks (δq). We do not explicitly display the transverse index j of the operator Oδq

and of the corresponding DPDs, unless it is needed. The field with argument y + 1
2z in

Oq(y, z) is associated with a quark in the amplitude of a double scattering process and the

field with argument y− 1
2z with a quark in the complex conjugate amplitude. The Wilson

lines are defined as

W (ξ, v) = P exp

[
ig ta

∫ 0

−∞
ds vAa(ξ + sv)

]
, (3.5)

where P denotes path ordering, such that fields taAa(ξ+sv) with smaller s stand further to

the left in the expanded exponential. Our convention for the strong coupling g is specified

in appendix D. Throughout this work, we only consider the case v = 0. In the matrix

element (3.2) for a right-moving proton, one takes a direction vL with v−L ≫ −v+L > 0, and

in its analogue for a left-moving proton one has a direction vR with v+R ≫ −v−R > 0. In both

cases, the Wilson lines are past-pointing. Analogous operators are defined for antiquarks,

with some sign changes as specified in section 2.2 of [27]. For gluons, one has

Oa(y, z) = Πjj′
a G+j′

(
y − 1

2z
)
W †(y − 1

2z, vL
)
W
(
y + 1

2z, vL
)
G+j

(
y + 1

2z
)∣∣∣

z+=y+=0
(3.6)

with spin projections

Πjj′
g = δjj

′
, Πjj′

∆g = iϵjj
′
,

[
Πkk′

δg

]
jj′ = τ jj

′,kk′ (3.7)

onto unpolarised gluons (g), longitudinally polarised gluons (∆g) and linearly polarised

gluons (δg). The indices j, j′, k, k′ = 1, 2 run over transverse components, ϵjj
′
is the

antisymmetric tensor with ϵ12 = 1, and τ jj
′,kk′ is defined as

τ jj
′,kk′ =

1

2

(
δjkδj

′k′ + δjk
′
δj

′k − δjj
′
δkk

′
)
. (3.8)

The Wilson lines in (3.6) are in the adjoint representation rather than in the fundamental

one (see section 3.2). Making the colour indices of the operators explicit, we have

Oq, jj′ = q̄k′ (W
†)k′j′ ΓWjk qk , Og, aa′ = ΠGb′ (W

†)b′a′ Wab Gb (3.9)

for quarks and gluons, respectively.
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Double parton distrbtn of the pion in effective quark 
model (continued)

Cross diagram

X

X

z1
z2 z3 z4

↵1

↵2

Two-parton distribution function is given by ??

hh'4'3'2'1ii =
2Y

i=1

Z
dz�

i

d2zi
(2⇡)3

eixiz
�
i p

+�iziki

⇥ 2p+

Z
dy� hp|'(y � z1

2
)'(�z2

2
)'(

z2

2
)'(y +

z1

2
)|pi

����
z

+
i =y

+=0

(1)

For the cross diagram represented in the figure, two-parton distribution function
is

hh'4'3'2'1ii =
2Y

i=1

Z
dz�

i

d2zi
(2⇡)3

eixiz
�
i p

+�iziki

⇥ 2p+

Z
dy�

Z
d4↵1e

i↵1p

Z
d4↵2e

�i↵2pTr{S
F

(z3 � ↵1)SF

(↵1 � z2)

⇥ �
i

f
⇡

⌧�5SF

(z4 � ↵2)SF

(↵2 � z1)�
i

f
⇡

⌧�5}
����
z

+
i =y

+=0

(2)

Let calculate the integral over ↵
i

I =

Z
d4↵1e

i↵1p

Z
d4↵2e

�i↵2pTr{S
F

(z3 � ↵1)SF

(↵1 � z2)

⇥ �
i

f
⇡

⌧�5SF

(z4 � ↵2)SF

(↵2 � z1)�
i

f
⇡

⌧�5} (3)

1

Leading diagram is zero
hence the quark interaction
due to goldstone bosons
exchange is important to
describe correlations in DPDs.
It is also subleading in large Nc
limit and does NOT reduce to
the product of quark distributions!

Presently all interaction diagrams are computed,
it seems there is very interesting quark correlations
in DPDs! 



Quark quasi-distributions in Chiral Quark-Soliton
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I. GENERAL FORMULATION

We start from the definition of the paper by Diakonov et al.[1] The equal-time matrix elements in the nucleon state,
with the nucleon velocity v,

D
i

(x, v) =

Z
d3k

(2⇡)3
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✓
x� k3

P
N

◆Z
d3x

1

d3x
2

e�i

~

k·(~x1�~x2)hN
v

| ̄(~x
2

, t)�
i

 (~x
1

, t)|N
v

i,

D̄
i

(x, v) =

Z
d3k

(2⇡)3
�

✓
x� k3

P
N

◆Z
d3x

1

d3x
2

e�i

~

k·(~x1�~x2)hN
v

|Tr
⇥
�
i

 (~x
1

, t) ̄(~x
1

, t)
⇤
|N

v

i, (1)

for the quark and anti-quark distributions, with the operator � = �
0

(1± �
5

)/2. The nucleon matrix element is equal
to the Green’s function, (apart from the full expression, sum over the occupied levels)

�iG
F

= S[~v]

"
⇥(t

2

� t
1

)
X

occ

�
n

(~x
1

)�†
n

(~x
2

)�
0

exp(�iE
n

(t
1

� t
2

))

#
S�1[~v]. (2)

Then we have

D
i

(x, v) = �iN
c

Z
d3k

(2⇡)3
�

✓
x� k3

P
N

◆Z
d3x

1

d3x
2

e�i

~

k·(~x1�~x2)(�
i

)
ab

G
F

(~x
1

, t
1

, ~x
2

, t
2

)
ba

= N
c

Z
d3k

(2⇡)3
�

✓
x� k3

P
N

◆Z
d3x

1

d3x
2

e�i

~
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i

)
ab

⇥ S[~v]
bc

"
X

occ
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n
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)
c
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e
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0
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ed
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Parton quasi-distributions were suggested by X.-D. Ji [PRL (2013)]

to access parton distribution on the lattice.
Actually, the PqDs were introduced in1997 by 
Diakonov, Petrov,Weiss+MVP [PRD 1997] to compute parton 
distributions  in quark-soliton model
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 is Feynman boosted Green function in external soliton
(meson mean) field.



Quark quasi-distributions in Chiral Quark-Soliton
model (continued)

First results for the unpolarized (anti-) quark quasi-distribution

Plans: to compute polarized and transversity quasi-distributions
and apply the results for the extrapolation of the lattice 
measurements



ChPT for (double) parton distributions

Chiral expansion for 3D quark distributions

q(x, b⇤) =

Z
d2�⇤
(2⇤)2

ei
⇥b?⇥�?

Z
d⇥

2⇤
e�i�x(P ·n)⇥⇤+(p⇥)|ū
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For large transverse distance one can apply ChPT because only dofs related to Goldstone
bosons are relevant.  The light-cone quark operator can be matched to the operator
made of only Goldstone bosons
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expressed in terms of Nambu-Goldstone fields. The form of the corresponding operator

has been derived in Refs. [4, 6]. The light-cone operator in the low-energy limit can be

expressed in terms of the chiral fields U(x) = exp(iπa(x)τa/Fπ) as follows:
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+ O
(

U4
)

.

Here L(α,β) is the function which encodes the non-perturbative QCD dynamics at the

typical hadronic mass scale Λχ. From the discrete P, T and C symmetries one can obtain

that the function L(α,β) is even in the variable α. Eq. (2.3) provides us with the leading

order chiral image of the light-cone operator (2.1), we shall see that the higher chiral order

operators (which we denote as O
(

U4
)

) are irrelevant for the leading large b⊥ asymptotic

of the 3D parton distributions.

The low energy dynamics of the Nambu-Goldstone bosons is governed by the effective

chiral Lagrangian [18]:
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where O(p4) stays for the chiral Lagrangian of higher orders. With help of the chiral

Lagrangian (2.4) we can compute pion matrix elements of the light-cone operator (2.3).

The result of the tree-level calculations of the matrix element which enters the definition

of the 3D parton distribution (2.1) (f = g = u in Eq. (2.3)) has the following form:
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where
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q (x) has the meaning of the pion parton distribution in the chiral limit
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d2b⊥q(x, b⊥)|mπ=0 and can be expressed in term of the function L(α,β) as follows [4]:
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We see from Eq. (2.5) that the tree-level 3D parton distribution is proportional to δ(⃗b⊥)

meaning that it is zero in the large b⊥ limit. It is not surprising, the tree-level diagrams

are analytical in the momentum space, therefore their Fourier transform is exponentially

small at the transverse distance of our interest b⊥ ≫ 1/Λχ. Such exponentially small

contributions are “seen” on the background of power-like functions ∼ 1/bn⊥ as δ-function

and its derivatives. We shall systematically neglect such contributions.

The chiral corrections to the tree-level result (2.5) originate from different sources:

– 3 –
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Tree level calculations of the pion matrix element with Weinberg Lagrangian gives
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3D quark distributions at large b
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• tree level contribution of the higher order light-cone operators (denoted by O(U4) in

Eq. (2.2)).

Obviously, the last type of the contribution is exponentially small at b⊥ → ∞ and can be

neglected. The one-loop contribution to the large b⊥ asymptotic of 3D parton distribution

was calculated in Ref. [4], it has the following form§:

q(x, b⊥) = δ(x)
2

3πΛ2
χb

4
⊥

+O

(

ln(b2⊥Λ2
χ)

Λ4
χb

6
⊥

)

. (2.6)

That is very instructive result, it demonstrates that the leading large b⊥ asymptotic of

the 3D parton distributions is concentred at small longitudinal momentum fractions x

of quarks. In order to resolve the δ-function contribution one has to compute the next-

to-leading (NL) contributions to the large-b⊥ asymptotic of q(x, b⊥). Such analysis has

been performed in Ref. [9], it has been shown that the NL contribution has the following

structure:

qNL(x, b⊥) ∼
ln(b2⊥Λ2

χ)

Λ4
χb

6
⊥

(

1 +O

(

1

ln(b2⊥Λ2
χ)

))

[

δ′(x) + qsmooth(x)
]

. (2.7)

Here the quantities denoted as O
(

1/ ln(b2⊥Λ2
χ)
)

and qsmooth(x) receive contributions from

the higher order chiral Lagrangian (O(p4) in Eq. (2.3)) and from the higher order parts

(O(U4)) of the chiral light-cone operator (2.2). Whereas the contribution proportional to

δ′(x) originates entirely from the leading chiral Lagrangian (2.3) and leading order light-

cone operator (2.2). The function qsmooth(x) does not contain δ-function like singularities

for any value of x. Comparing the NL expression (2.7) for the large-b⊥ asymptotic of 3D

parton distribution with the leading one (2.6), we see that the contribution proportional

qsmooth(x) can be neglected in the whole region of x as the it is parametrically suppressed

by 1/(Λ2
χb

2
⊥) relative to the leading order. The contributions of order O

(

1/ ln(b2⊥Λ2
χ)
)

we

also neglect as they are compared with unity, that determines the parametrical accuracy of

our calculations – the relative error is of order 1/ ln(b2⊥Λ2
χ) (numerically 1/ ln(b2⊥Λ2

χ) ≈ 0.3

for b⊥ = 1 fm). The situation is different for the δ′(x) contribution in Eq. (2.7), it can be

neglected for x of order unity, however for x !
ln(b2⊥Λ2

χ)

Λ2
χb

2
⊥

it is parametrically of the same

order as the leading contribution (2.6).

From above consideration we can draw two lessons. First, that the large-b⊥ asymptotic

of the 3D parton distribution in the pion q(x, b⊥) depends on the considered region of

Bjorken x:

i) q(x, b⊥) ∼
ln(b2⊥Λ2

χ)

Λ4
χb

6
⊥

for x ∼ 1,

ii) q(x, b⊥) ∼ 1
b2⊥ ln(b2⊥Λ2

χ)
for x ∼ ln(b2⊥Λ2

χ)

Λ2
χb

2
⊥

(numerically, x ∼ 0.1 for b⊥ = 1 fm).

One see that in the second region of Bjorken x the 3D parton density parametrically is

much larger than in the first region. For example, we shall see below that the pion radius

§For the sake of brevity we consider for a moment the chiral limit mπ = 0.

– 4 –

Leading order of large b expansion
one loop
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Next correction. Note
the delta function contribution
for x~1/b^2 it is of the same 
order as LO !!

Three loop correction gives 1/b^8, but with more singular second derivative of delta function.
Coefficients in front of singular contribution are leading logs coefficients!

We computed LL coeffs (see below) and obtained that pion radius grows exponentialy with
rapidity, in contrast to Gribov diffusion in which the radius^2 grows linearely with rapidity.

2

distributions of the pion, the Nambu-Goldstone boson
of the spontaneous breakdown of the chiral symmetry in
QCD. Especially we are interested in the behaviour with
η = ln(1/x) of the pion transverse radius.
The very fact of the spontaneous breakdown of the chi-

ral symmetry in QCD allows one to obtain a number of
strict results on the large distance (low-energy) behaviour
of various quantities describing hadrons and their strong
interactions (for a historical review see Ref. [3]). Till
recently the applications of Chiral Perturbation Theory
(χPT) have been devoted mostly to studies of soft inter-
action of hadrons and to calculations of hadrons static
properties (the status of χPT is reviewed in Refs. [4]).
One of classical results of χPT is the divergency of the

pion radius in the chiral limit (mπ → 0). The corre-
sponding radius behaves with the parametrically small
pion mass as follows [5]:

b2⊥ =
2

3(4πFπ)2
ln

(

Λ2
χ

m2
π

)

(8)

b2⊥ =
2

3Λ2
χ

ln

(

Λ2
χ

m2
π

)

⎡

⎣1 +O

⎛

⎝

1

ln
(

Λ2
χ

m2
π

)

⎞

⎠

⎤

⎦ . (9)

Here

Λχ = 4πFπ ≈ 6 fm−1 (10)

is the inherent for χPT short distance scale (1/Λχ ≈
0.17 fm). In connection with this text book result one
can ask several questions. Which range of Bjorken x
is responsible for the logarithmic divergency of the pion
radius? What is the “evolution” of the pion transverse
radius with increasing of the rapidity η = ln (1/x)? Is the
Gribov diffusion (6) still valid for the Nambu-Goldstone
bosons?
Various aspects of the χPT for parton distributions

have been developed in Refs. [7–15].
Applications of the χPT to the partonic structure of

hadrons reveal a number of new interesting phenomena.

In particular, in Refs. [13, 14] it was demonstrated that
the standard χPT should be modified when it is applied
to (generalized) parton distributions (GPDs[32]). It was
shown that the χPT for GPDs possesses nontrivial ex-
pansion parameter ∼ p2 ln(p2)/x (p2 stays for external
soft momenta and/or m2

π, x is the Bjorken scaling vari-
able). Presences of such parameter makes the all-loop
resummation of χPT for GPDs imperative, because for
x ∼ p2 the new parameter is not anymore small and
we are confronted with problem of summation of large
infrared logs. Indeed, for x ∼ O(p2) the nth order con-
tribution to chiral expansion of GPDs is parametrically
proportional to

[

p2 ln(p2)/x
]n ∼

[

ln(p2)
]n

and hence
all orders of chiral expansion must be taken into ac-
count. In Refs. [13, 14] the origin of the contributions
∼

[

p2 ln(p2)/x
]n

was identified and the way to sum up
such contributions is demonstrated.

q(x, b⊥) =

∫

d2∆⊥

(2π)2
ei⃗b⊥∆⃗⊥

∞
∑

n=1

δ(n−1)(x)
Cn

n!
⟨
o

β (n−1)⟩ (11)

×
∫ 1

−1
dη

[

m2
π + ∆2

⊥

4 (1 − η2)

Λ2
χ

ln

(

Λ2
χ

m2
π +

∆2

⊥

4 (1− η2)

)]

where ⟨
o

β (n−1)⟩ is the corresponding Mellin moment of

the quark distribution in the chiral limit ⟨
o

β (n−1)⟩ =
∫ 1
−1 dβ βn−1

o
q (β). The coefficients Cn can be expressed

through the LL coefficients (ωnl of Appendix A) of the
ππ scattering amplitude in the chiral limit. The corre-
sponding expression has the following form:

Cn =
n
∑

l=0

ωnl +
N

4
((−1)n + 1)

(2n)!

(n!)2
ωnn . (12)

Note that the effective chiral Lagrangian (??) corre-
sponds to N = 3. The LL coefficients ωnl can be very ef-
fectively and practically to the unlimited loop order can
be computed with help of recursive Eq. (??), see also
Refs. [19–21].

q±(x, b⊥) =
1

πb2
⊥

A ln(b2
⊥
Λ2
χ)

∫ 1

−1
dη

1
√

1− η2

∫ 1

0

dβ

β
Q±

c (β) (13)

×

⎡

⎢

⎢

⎣

√

x

β

b2
⊥
Λ2
χ

A ln(b2
⊥
Λ2
χ)

+m2
πb

2
⊥

K1

⎛

⎜

⎜

⎝

2

√

√

√

√

x
β

b2
⊥
Λ2

χ

A ln(b2
⊥
Λ2

χ
)
+m2

πb
2
⊥

1− η2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

×
(

1 +O

(

1

ln(Λ2
χb

2
⊥
)

))

.
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the following structure:

A
(

(k · P ),∆2, k2,mπ
)

= γn(k · P )n+1 +

+
[

γ(1,0,0,0)n m2
π + γ(0,1,0,0)n k2 + γ(0,0,1,0)n ∆2 + γ(0,0,0,1)n (k ·∆)

]

(k · P )n + . . . (3.2)

In this equation we single out the contribution with the highest possible in a nth loop

diagram power of (k ·P ), as it produces the contribution to the integral (3.1) which contains

the strongest singularity δ(n)(x). Indeed, due to the fact that nµ is a light-cone vector,

n2 = 0 we obtain:
∫

dDk

(2π)D
(k · n)δ(β(k · n)− x(P · n))

[(k −∆/2)2 −m2
π][(k +∆/2)2 −m2

π]
γn(k · P )n+1

=
γn βn

n!
δ(n)(x)

∫ 1

−1
dη

∫

dDk

(2π)D
k2(n+1)

[k2 − (m2
π +

∆2
⊥
4 (1− η2)]2

(3.3)

=
γn βn

(n+ 1)!
δ(n)(x)

Γ(D + 2)Γ(2 −D − n)

2D+1πD/2Γ(D/2)

∫ 1

−1
dη

(

m2
π +

∆2
⊥

4
(1− η2)

)n+D−2

.

Obviously, other terms in the expansion of the n-loop four point pion Green function (3.2)

produce less singular than δ(n)(x) contributions and therefore they can be neglected. It

is an important observation, it implies that, although we work in the theory with the

massive pion, the four point pion Green function (denoted as the low blob in Fig. 1c) can

be computed in the massless limit. In other words, the low blob in Fig. 1c can be computed

as the forward pion-pion scattering amplitude in the chiral limit mπ = 0.

The expression (3.3) for D = 4 − 2ϵ in the limit ϵ → 0 contains a pole 1/ϵn+1. 1/ϵ

is due to loop integral over k in Eq. (3.3) and 1/ϵn is contained in γn. The coefficient

in front of 1/ϵn pole in γn obviously coincides with the coefficient in front of the n-loop

leading logarithm (LL) for the forward ππ scattering amplitude for the massless pions. The

method to compute the LL coefficients in the massless effective field theories was developed

in Refs. [15, 16, 17]. For readers convenience we summarize the method in Appendix A.

The coefficients γn in the expansion (3.2) are expressed in terms of the LL coefficients

ωnl (see Appendix A) for the massless ππ scattering amplitude. Instead giving this inter-

mediate expression we present the final result for the leading large-b⊥ asymptotic of the

3D quark distribution. The corresponding asymptotic is given by the sum of the singular

contributions ∼ δ(n−1)(x), with n corresponding to the loop order. The corresponding sum

has the following form:

q(x, b⊥) =

∫

d2∆⊥

(2π)2
ei⃗b⊥∆⃗⊥

∞
∑

n=1

δ(n−1)(x)
Cn

n!
⟨
o
β (n−1)⟩ (3.4)

×
∫ 1

−1
dη

[

m2
π +

∆2
⊥
4 (1− η2)

Λ2
χ

ln

(

Λ2
χ

m2
π +

∆2
⊥
4 (1− η2)

)]n

,

where ⟨
o
β (n−1)⟩ is the corresponding Mellin moment of the quark distribution in the chiral

limit ⟨
o
β (n−1)⟩ =

∫ 1
−1 dβ βn−1

o
q (β). The coefficients Cn can be expressed through the LL
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Coefficients Cn are related to LLs in pi-pi scattering amplitude in massless limit.
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The summation of the series (3.4) in the transverse b⊥-plane has an advantage – the

analytical in the momentum space contributions are transformed into the exponentially

small quantities in the b⊥ space, therefore they can be safely neglected. Additionally, the

expression for the summation of the series (3.4) in the momentum space gives the expression

which has step function like non-analyticity at ∆2
⊥ ∼ x Λ2

χ, what makes studies of the pion

radius non-trivial.

Now we can perform the summation of the series (3.4) directly in the transverse plane

space. We do not show all steps of the summation in the details. The reader can easily per-

form the corresponding calculations, we just note that we use the following representation

for the product of Γ functions:

∫ ∞

0
dz zn

(

2z
ν
2Kν(2

√
z)
)

= Γ(n+ 1)Γ(n+ 1 + ν), (3.10)

where Kν(x) is the modified Bessel functions. Additionally, the following integral can be

used:
∫ 1

0
dz zn+1

[

1√
1− z

− 2 ln

(

1 +
√
1− z√
z

)]

=
n+ 1

n+ 2

√
π Γ(n+ 2)

Γ
(

n+ 5
2

) , (3.11)

as the integral presentation for the ratios of the Γ functions.

Due to presence of the factor (−1)n in the expression (3.7) it is useful to sum up

separately even and odd n in the series (3.4). For that, instead of the single function

q(x, b⊥) defined on the interval −1 ≤ x ≤ 1, one introduces charge conjugation even

q+(x, b⊥) and C-odd q−(x, b⊥) functions:

q±(x, b⊥) = q(x, b⊥)± q̄(x, b⊥), (3.12)

each is defined for 0 ≤ x ≤ 1.

Eventually, after simple calculations, one obtains the leading large b⊥ asymptotic of

3D parton distributions for the pion in the chiral limit:

q(x, b⊥) =
1

πb2⊥ ln(b2⊥Λ
2
χ)

∫ 1

0

dβ

β
Q(β) (3.13)

×

[

x

β

b2⊥Λ
2
χ

A ln(b2⊥Λ
2
χ)

K2

(

2

√

x

β

b2⊥Λ
2
χ

A ln(b2⊥Λ
2
χ)

)]

×

(

1 +O

(

1

ln(Λ2
χb

2
⊥)

))

.

q±(x, b⊥) =
1

πb2⊥ A ln(b2⊥Λ
2
χ)

∫ 1

0

dβ

β
Q±(β) (3.14)

×

[

c0
x

β

b2⊥Λ
2
χ

A ln(b2⊥Λ
2
χ)

K2

(

2

√

x

β

b2⊥Λ
2
χ

A ln(b2⊥Λ
2
χ)

)
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distributions of the pion, the Nambu-Goldstone boson
of the spontaneous breakdown of the chiral symmetry in
QCD. Especially we are interested in the behaviour with
η = ln(1/x) of the pion transverse radius.
The very fact of the spontaneous breakdown of the chi-

ral symmetry in QCD allows one to obtain a number of
strict results on the large distance (low-energy) behaviour
of various quantities describing hadrons and their strong
interactions (for a historical review see Ref. [3]). Till
recently the applications of Chiral Perturbation Theory
(χPT) have been devoted mostly to studies of soft inter-
action of hadrons and to calculations of hadrons static
properties (the status of χPT is reviewed in Refs. [4]).
One of classical results of χPT is the divergency of the

pion radius in the chiral limit (mπ → 0). The corre-
sponding radius behaves with the parametrically small
pion mass as follows [5]:

b2⊥ =
2

3(4πFπ)2
ln

(

Λ2
χ

m2
π

)

(8)

b2⊥ =
2

3Λ2
χ

ln

(

Λ2
χ

m2
π

)

⎡

⎣1 +O

⎛

⎝

1

ln
(

Λ2
χ

m2
π

)

⎞

⎠

⎤

⎦ . (9)

Here

Λχ = 4πFπ ≈ 6 fm−1 (10)

is the inherent for χPT short distance scale (1/Λχ ≈
0.17 fm). In connection with this text book result one
can ask several questions. Which range of Bjorken x
is responsible for the logarithmic divergency of the pion
radius? What is the “evolution” of the pion transverse
radius with increasing of the rapidity η = ln (1/x)? Is the
Gribov diffusion (6) still valid for the Nambu-Goldstone
bosons?
Various aspects of the χPT for parton distributions

have been developed in Refs. [7–15].
Applications of the χPT to the partonic structure of

hadrons reveal a number of new interesting phenomena.

In particular, in Refs. [13, 14] it was demonstrated that
the standard χPT should be modified when it is applied
to (generalized) parton distributions (GPDs[32]). It was
shown that the χPT for GPDs possesses nontrivial ex-
pansion parameter ∼ p2 ln(p2)/x (p2 stays for external
soft momenta and/or m2

π, x is the Bjorken scaling vari-
able). Presences of such parameter makes the all-loop
resummation of χPT for GPDs imperative, because for
x ∼ p2 the new parameter is not anymore small and
we are confronted with problem of summation of large
infrared logs. Indeed, for x ∼ O(p2) the nth order con-
tribution to chiral expansion of GPDs is parametrically
proportional to

[

p2 ln(p2)/x
]n ∼

[

ln(p2)
]n

and hence
all orders of chiral expansion must be taken into ac-
count. In Refs. [13, 14] the origin of the contributions
∼

[

p2 ln(p2)/x
]n

was identified and the way to sum up
such contributions is demonstrated.

q(x, b⊥) =

∫

d2∆⊥

(2π)2
ei⃗b⊥∆⃗⊥

∞
∑

n=1

δ(n−1)(x)
Cn

n!
⟨
o

β (n−1)⟩ (11)

×
∫ 1

−1
dη

[

m2
π + ∆2

⊥

4 (1 − η2)

Λ2
χ

ln

(

Λ2
χ

m2
π +

∆2

⊥

4 (1− η2)

)]

where ⟨
o

β (n−1)⟩ is the corresponding Mellin moment of

the quark distribution in the chiral limit ⟨
o

β (n−1)⟩ =
∫ 1
−1 dβ βn−1

o
q (β). The coefficients Cn can be expressed

through the LL coefficients (ωnl of Appendix A) of the
ππ scattering amplitude in the chiral limit. The corre-
sponding expression has the following form:

Cn =
n
∑

l=0

ωnl +
N

4
((−1)n + 1)

(2n)!

(n!)2
ωnn . (12)

Note that the effective chiral Lagrangian (??) corre-
sponds to N = 3. The LL coefficients ωnl can be very ef-
fectively and practically to the unlimited loop order can
be computed with help of recursive Eq. (??), see also
Refs. [19–21].

q±(x, b⊥) =
1

πb2
⊥

A ln(b2
⊥
Λ2
χ)

∫ 1

−1
dη

1
√

1− η2

∫ 1

0

dβ

β
Q±

c (β) (13)

×

⎡

⎢

⎢

⎣

√

x

β

b2
⊥
Λ2
χ

A ln(b2
⊥
Λ2
χ)

+m2
πb

2
⊥

K1

⎛

⎜

⎜

⎝

2

√

√

√

√

x
β

b2
⊥
Λ2

χ

A ln(b2
⊥
Λ2

χ
)
+m2

πb
2
⊥

1− η2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

×
(

1 +O

(

1

ln(Λ2
χb

2
⊥
)

))

.

A =
3

2

That eq. provides model independent asymptotic of 3D quark distribution for

b? ! 1 and x ⇠
�2
�

b

2
?

ChPT for (double) parton distributions (continued)
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Figure 1: Different types of the diagrams contributing to the pion 3D parton density.

One see that in the second region of Bjorken x the 3D parton density parametrically is

much larger than in the first region. For example, we shall see below that the pion radius

squared ⟨b2⊥⟩(x) receives the dominant contribution from the second region. That leads to

very interesting phenomenon of “chiral inflation” of the pion radius, see discussion below.

The second lesson is that the large-b⊥ asymptotic of q(x, b⊥) in the dominant region

ii) can be computed with relative accuracy of O
(

1/ ln(b2⊥Λ
2
χ)
)

using only the leading order

chiral Lagrangian (2.4) and only the leading order chiral light-cone operator (2.3). That

implies that the most dominant part of the large-b⊥ asymptotic of the 3D parton density

in the pion can be obtained in a model independent way. The corresponding asymptotic

should be expressed entirely in terms of the basic quantities Fπ, mπ and the parton dis-

tribution in the chiral limit
o
q (x) ≡

∫

d2b⊥q(x, b⊥)|mπ=0. Therefore we can obtain a strict

non-perturbative result for the partonic structure of Nambu-Goldstone bosons in QCD.

3. The leading large-b⊥ asymptotic of the 3D parton density

In previous section we discussed that the large-b⊥ asymptotic of the 3D parton density

is concentrated in the region of x !
ln(b2⊥Λ2

χ)

Λ2
χb

2
⊥

. In this region of Bjorken x the 3D parton

density for large b⊥ receives the contributions from arbitrary number of pion loops. The

possible types of the loop diagrams contributing to the pion 3D parton density are shown

in Fig. 1. The upper cross denotes the chiral image of the light-cone quark operator, its

leading order form is given by Eq. (2.3). The low blob corresponds to any-loop pion-pion

interaction described by the effective chiral Lagrangian. The types of diagrams in Fig. 1

were analyzed in details in Ref. [10]. It was demonstrated that the leading δ-function like

singularities are contained only in diagrams of the type shown in Fig. 1c, other types of the

diagrams either do not contain δ-functions or the corresponding singularities are suppressed

by the powers of small chiral expansion parameter.

Following Ref. [10] let us sketch the mechanism and origin of the leading δ-function

singularities in the 3D parton distributions. The diagram in Fig. 1c contains the following

loop integral (we use dimensional regularization D = 4− 2ϵ):

∫

dDk

(2π)D
(k · n)δ(β(k · n)− x(P · n))

[(k −∆/2)2 −m2
π][(k +∆/2)2 −m2

π]
A
(

(k · P ),∆2, k2,mπ
)

. (3.1)

Here A
(

(k · p),∆2, k2,mπ
)

is the four pion Green function which corresponds to the low

blob in Fig. 1c. If this Green function is computed to the nth loop order it has obviously
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We revealed a new phenomenon of the chiral inflation of the pion radius.

PACS numbers:

Famous experiments of Hofstadter et al. [1] on elas-
tic electron scattering established that hadrons are not
point-like particles and have a non-trivial spatial struc-
ture of a finite size of the order of ∼1 fm. For studies
of the space-time picture of hadrons and their interac-
tions in a quantum field theory it is useful to consider
the hadron in the infinite momentum frame [2]. In this
frame the hadron moves with almost speed of light and
therefore one can easily separate the partons (quark, anti-
quarks and gluons) which “belong” to the hadron from
that “belonging” to vacuum fluctuations.
Quantitatively the structure of the hadron is described

by so-called 3D parton distributions [18], which can be
obtained as the zero longitudinal momentum transfer
limit of generalized parton distributions (GPDs) [16]:

q(x, b⊥) =

∫

d2∆⊥

(2π)2
e−i⃗b⊥∆⃗⊥H(x, ξ = 0,−∆2

⊥). (1)

Here x > 0 corresponds to the quark distribution and
x < 0 corresponds to anti-quark distribution with minus
sign in front. The 3D parton distribution (q(x, b⊥)) is
of fundamental importance for understanding quark and
gluon structure of hadrons. It gives the probability den-
sity to find a parton (quark, anti-quark or gluon) with
longitudinal momentum fraction x and the coordinate
b⊥ in the transverse plane, in this way providing us with
the three dimensional picture of a hadron. The partons
(to be specific we shall discuss below the distributions of
up quarks and anti-quarks in π+) with the longitudinal
momentum fraction x within the hadron occupy a disc of
the average transverse size squared given by:

b2⊥(x) =

∫

d2b⊥ b2⊥ q(x, b⊥) . (2)

The transverse size of the hadron [? ] which is de-
termined by the hadron form factor at low momentum
transfer can be obtained by integrating b2⊥(x) over the
momentum fraction x:

b2⊥ =

∫ 1

−1
dx b2⊥(x) . (3)

One can also introduce the normalized quark probabil-

ity density in the transverse plane:

ρ(x, b⊥) =
q(x, b⊥)

q(x)
(4)

where q(x) =
∫

d2b⊥q(x, b⊥) is usual quark distribution
function. Eq. (4) defines the conditional probability den-
sity to find quark at transverse distance b⊥ if the longitu-
dinal momentum fraction of the quark is fixed to x. One
can show on general grounds [18] that ρ(x, b⊥) → δ(⃗b⊥)
at x → 1.
One can interpret the normalized quark density (4) as

an evolution of the probability density for a stochastic
motion of a particle in the transverse plane. The role of
the evolution time is played by the rapidity η = ln(1/x).
At the initial time η = 0 (x = 1) the particle is localized
at b⃗⊥ = 0. For the stochastic process we can introduce
the mean square distance of the particle as follows:

d2⊥(x) =

∫

d2b⊥ b2⊥ ρ(x, b⊥) =
b2⊥(x)

q(x)
. (5)

V.N. Gribov in his famous lectures [2] derived that in a
broad class of quantum field theories the stochastic pro-
cess discussed above corresponds to a Gaussian random
walk in the transverse plane, hence one deals in this case
with usual diffusion:

d2⊥(x) = D ln

(

1

x

)

= D η, (6)

where D is a diffusion coefficient. Gribov diffusion is
realized in a simple (Regge model inspired) model for
the 3D quark distributions [6].

q(x, b⊥) =

∫

d2∆⊥

(2π)2
e−i⃗b⊥∆⃗⊥ xα′∆2

⊥ q(x), (7)

where α′ is a slope of the corresponding Regge trajectory.
It is obvious that in this model d2⊥(x) obeys the diffusion
law (6) with the diffusion coefficient D = 4α′

Gribov diffusion (6) has been obtained assuming that
the interaction in an underlying field theory is short range
and strong, see discussion in Ref. [2]. This assumptions
are not satisfied for the interaction of Nambu-Goldstone
bosons. Our aim here is to investigate the quark 3D
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the hadron in the infinite momentum frame [2]. In this
frame the hadron moves with almost speed of light and
therefore one can easily separate the partons (quark, anti-
quarks and gluons) which “belong” to the hadron from
that “belonging” to vacuum fluctuations.
Quantitatively the structure of the hadron is described

by so-called 3D parton distributions [18], which can be
obtained as the zero longitudinal momentum transfer
limit of generalized parton distributions (GPDs) [16]:

q(x, b⊥) =

∫

d2∆⊥

(2π)2
e−i⃗b⊥∆⃗⊥H(x, ξ = 0,−∆2

⊥). (1)

Here x > 0 corresponds to the quark distribution and
x < 0 corresponds to anti-quark distribution with minus
sign in front. The 3D parton distribution (q(x, b⊥)) is
of fundamental importance for understanding quark and
gluon structure of hadrons. It gives the probability den-
sity to find a parton (quark, anti-quark or gluon) with
longitudinal momentum fraction x and the coordinate
b⊥ in the transverse plane, in this way providing us with
the three dimensional picture of a hadron. The partons
(to be specific we shall discuss below the distributions of
up quarks and anti-quarks in π+) with the longitudinal
momentum fraction x within the hadron occupy a disc of
the average transverse size squared given by:

b2⊥(x) =

∫

d2b⊥ b2⊥ q(x, b⊥) . (2)

The transverse size of the hadron [? ] which is de-
termined by the hadron form factor at low momentum
transfer can be obtained by integrating b2⊥(x) over the
momentum fraction x:

b2⊥ =

∫ 1

−1
dx b2⊥(x) . (3)

One can also introduce the normalized quark probabil-

ity density in the transverse plane:

ρ(x, b⊥) =
q(x, b⊥)

q(x)
(4)

where q(x) =
∫

d2b⊥q(x, b⊥) is usual quark distribution
function. Eq. (4) defines the conditional probability den-
sity to find quark at transverse distance b⊥ if the longitu-
dinal momentum fraction of the quark is fixed to x. One
can show on general grounds [18] that ρ(x, b⊥) → δ(⃗b⊥)
at x → 1.
One can interpret the normalized quark density (4) as

an evolution of the probability density for a stochastic
motion of a particle in the transverse plane. The role of
the evolution time is played by the rapidity η = ln(1/x).
At the initial time η = 0 (x = 1) the particle is localized
at b⃗⊥ = 0. For the stochastic process we can introduce
the mean square distance of the particle as follows:

d2⊥(x) =

∫

d2b⊥ b2⊥ ρ(x, b⊥) =
b2⊥(x)

q(x)
. (5)

V.N. Gribov in his famous lectures [2] derived that in a
broad class of quantum field theories the stochastic pro-
cess discussed above corresponds to a Gaussian random
walk in the transverse plane, hence one deals in this case
with usual diffusion:

d2⊥(x) = D ln

(

1

x

)

= D η, (6)

where D is a diffusion coefficient. Gribov diffusion is
realized in a simple (Regge model inspired) model for
the 3D quark distributions [6].

q(x, b⊥) =

∫

d2∆⊥

(2π)2
e−i⃗b⊥∆⃗⊥ xα′∆2

⊥ q(x), (7)

where α′ is a slope of the corresponding Regge trajectory.
It is obvious that in this model d2⊥(x) obeys the diffusion
law (6) with the diffusion coefficient D = 4α′

Gribov diffusion (6) has been obtained assuming that
the interaction in an underlying field theory is short range
and strong, see discussion in Ref. [2]. This assumptions
are not satisfied for the interaction of Nambu-Goldstone
bosons. Our aim here is to investigate the quark 3D
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ChPT for (double) parton distributions (continued)



Chiral inflation of the pion radius

If one uses our resummation, the result for the radius (massless limit):

2

distributions of the pion, the Nambu-Goldstone boson
of the spontaneous breakdown of the chiral symmetry in
QCD. Especially we are interested in the behaviour with
η = ln(1/x) of the pion transverse radius.
The very fact of the spontaneous breakdown of the chi-

ral symmetry in QCD allows one to obtain a number of
strict results on the large distance (low-energy) behaviour
of various quantities describing hadrons and their strong
interactions (for a historical review see Ref. [3]). Till
recently the applications of Chiral Perturbation Theory
(χPT) have been devoted mostly to studies of soft inter-
action of hadrons and to calculations of hadrons static
properties (the status of χPT is reviewed in Refs. [4]).
One of classical results of χPT is the divergency of the

pion radius in the chiral limit (mπ → 0). The corre-
sponding radius behaves with the parametrically small
pion mass as follows [5]:

b2⊥(x) =
2

3(4πFπ)2
1

x
(8)

b2⊥ =
2

3Λ2
χ

ln

(
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⎡

⎣1 +O
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ln
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m2
π
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⎞
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⎤

⎦ . (9)

Here

Λχ = 4πFπ ≈ 6 fm−1 (10)

is the inherent for χPT short distance scale (1/Λχ ≈
0.17 fm). In connection with this text book result one
can ask several questions. Which range of Bjorken x
is responsible for the logarithmic divergency of the pion
radius? What is the “evolution” of the pion transverse
radius with increasing of the rapidity η = ln (1/x)? Is the
Gribov diffusion (6) still valid for the Nambu-Goldstone
bosons?
Various aspects of the χPT for parton distributions

have been developed in Refs. [7–15].
Applications of the χPT to the partonic structure of

hadrons reveal a number of new interesting phenomena.

In particular, in Refs. [13, 14] it was demonstrated that
the standard χPT should be modified when it is applied
to (generalized) parton distributions (GPDs[32]). It was
shown that the χPT for GPDs possesses nontrivial ex-
pansion parameter ∼ p2 ln(p2)/x (p2 stays for external
soft momenta and/or m2

π, x is the Bjorken scaling vari-
able). Presences of such parameter makes the all-loop
resummation of χPT for GPDs imperative, because for
x ∼ p2 the new parameter is not anymore small and
we are confronted with problem of summation of large
infrared logs. Indeed, for x ∼ O(p2) the nth order con-
tribution to chiral expansion of GPDs is parametrically
proportional to

[

p2 ln(p2)/x
]n ∼

[

ln(p2)
]n

and hence
all orders of chiral expansion must be taken into ac-
count. In Refs. [13, 14] the origin of the contributions
∼

[

p2 ln(p2)/x
]n

was identified and the way to sum up
such contributions is demonstrated.
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where ⟨
o

β (n−1)⟩ is the corresponding Mellin moment of

the quark distribution in the chiral limit ⟨
o

β (n−1)⟩ =
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−1 dβ βn−1

o
q (β). The coefficients Cn can be expressed

through the LL coefficients (ωnl of Appendix A) of the
ππ scattering amplitude in the chiral limit. The corre-
sponding expression has the following form:

Cn =
n
∑

l=0

ωnl +
N

4
((−1)n + 1)

(2n)!

(n!)2
ωnn . (12)

Note that the effective chiral Lagrangian (??) corre-
sponds to N = 3. The LL coefficients ωnl can be very ef-
fectively and practically to the unlimited loop order can
be computed with help of recursive Eq. (??), see also
Refs. [19–21].
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Here the functions[33] Q±
c (β) is expressed in terms of the usual parton distributions in the chiral limit

o
q (x) as

That implies that the  mean distance of corresponding stochastic process rises exponentially
with “time” (rapidity)
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ei⃗b⊥∆⃗⊥

∞
∑

n=1

δ(n−1)(x)
Cn

n!
⟨
o

β (n−1)⟩ (11)

×
∫ 1

−1
dη

[

m2
π + ∆2

⊥

4 (1 − η2)

Λ2
χ

ln

(

Λ2
χ

m2
π +

∆2

⊥

4 (1− η2)

)]

where ⟨
o

β (n−1)⟩ is the corresponding Mellin moment of

the quark distribution in the chiral limit ⟨
o

β (n−1)⟩ =
∫ 1
−1 dβ βn−1

o
q (β). The coefficients Cn can be expressed

through the LL coefficients (ωnl of Appendix A) of the
ππ scattering amplitude in the chiral limit. The corre-
sponding expression has the following form:

Cn =
n
∑

l=0

ωnl +
N

4
((−1)n + 1)

(2n)!

(n!)2
ωnn . (12)

Note that the effective chiral Lagrangian (??) corre-
sponds to N = 3. The LL coefficients ωnl can be very ef-
fectively and practically to the unlimited loop order can
be computed with help of recursive Eq. (??), see also
Refs. [19–21].

q±(x, b⊥) =
1

πb2
⊥

A ln(b2
⊥
Λ2
χ)

∫ 1

−1
dη

1
√

1− η2

∫ 1

0

dβ

β
Q±

c (β) (13)

×

⎡

⎢

⎢

⎣

√

x

β

b2
⊥
Λ2
χ

A ln(b2
⊥
Λ2
χ)

+m2
πb

2
⊥

K1

⎛

⎜

⎜

⎝

2

√

√

√

√

x
β

b2
⊥
Λ2

χ

A ln(b2
⊥
Λ2

χ
)
+m2

πb
2
⊥

1− η2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

×
(

1 +O

(

1

ln(Λ2
χb

2
⊥
)

))

.

ChPT for (double) parton distributions (continued)



ChPT for (double) parton distributions (continued)

 The same program can be carried out for DPDs

1) Derive the effective chiral operator for 

      note that the corresponding effective operator
      is NOT a product of effective operators for usual
      parton distributions!

2) Develop the all order resummation of chiral  logs
     for that operator. Interesting task: logs in higher
     (than 4-point) Green functions are required.

q̄(z1)�1q(z2)q̄(z3)�2q(0)

JHEP00(2007)000

Figure 1: Different types of the diagrams contributing to the pion 3D parton density.

One see that in the second region of Bjorken x the 3D parton density parametrically is

much larger than in the first region. For example, we shall see below that the pion radius

squared ⟨b2⊥⟩(x) receives the dominant contribution from the second region. That leads to

very interesting phenomenon of “chiral inflation” of the pion radius, see discussion below.

The second lesson is that the large-b⊥ asymptotic of q(x, b⊥) in the dominant region

ii) can be computed with relative accuracy of O
(

1/ ln(b2⊥Λ
2
χ)
)

using only the leading order

chiral Lagrangian (2.4) and only the leading order chiral light-cone operator (2.3). That

implies that the most dominant part of the large-b⊥ asymptotic of the 3D parton density

in the pion can be obtained in a model independent way. The corresponding asymptotic

should be expressed entirely in terms of the basic quantities Fπ, mπ and the parton dis-

tribution in the chiral limit
o
q (x) ≡

∫

d2b⊥q(x, b⊥)|mπ=0. Therefore we can obtain a strict

non-perturbative result for the partonic structure of Nambu-Goldstone bosons in QCD.

3. The leading large-b⊥ asymptotic of the 3D parton density

In previous section we discussed that the large-b⊥ asymptotic of the 3D parton density

is concentrated in the region of x !
ln(b2⊥Λ2

χ)

Λ2
χb

2
⊥

. In this region of Bjorken x the 3D parton

density for large b⊥ receives the contributions from arbitrary number of pion loops. The

possible types of the loop diagrams contributing to the pion 3D parton density are shown

in Fig. 1. The upper cross denotes the chiral image of the light-cone quark operator, its

leading order form is given by Eq. (2.3). The low blob corresponds to any-loop pion-pion

interaction described by the effective chiral Lagrangian. The types of diagrams in Fig. 1

were analyzed in details in Ref. [10]. It was demonstrated that the leading δ-function like

singularities are contained only in diagrams of the type shown in Fig. 1c, other types of the

diagrams either do not contain δ-functions or the corresponding singularities are suppressed

by the powers of small chiral expansion parameter.

Following Ref. [10] let us sketch the mechanism and origin of the leading δ-function

singularities in the 3D parton distributions. The diagram in Fig. 1c contains the following

loop integral (we use dimensional regularization D = 4− 2ϵ):

∫

dDk

(2π)D
(k · n)δ(β(k · n)− x(P · n))

[(k −∆/2)2 −m2
π][(k +∆/2)2 −m2

π]
A
(

(k · P ),∆2, k2,mπ
)

. (3.1)

Here A
(

(k · p),∆2, k2,mπ
)

is the four pion Green function which corresponds to the low

blob in Fig. 1c. If this Green function is computed to the nth loop order it has obviously

– 5 –



Summary

• Despite of slow hiring the project started and new
       interesting results and ideas are obtained

• It is clear how to proceed further

• The closer collaboration with Chinese group
       is still missing. This meeting perfectly serves
       to exchange ideas and to establish collaboration.


