

"Symmetries and the emergence of structure in QCD"

Status of Project A.5 Quark mass dependence of hadronic observables Feng-Kun Guo, <u>Ulf-G. Meißner</u>, Ping Wang

Deutsche Forschungsgemeinschaft

Staff

• Principal investigators:

Prof. Ulf-G. Meißner [UBO]

• Students:

```
Neramballi R. Acharya [UBO]
[6 months at ITP]
Meng-Lin Du [UBO, up to Aug. 2017]
[3 months at ITP]
```

• Post-Docs:

Zhi Yang [UBO, until July 2017] Meng-Lin Du [UBO, Sept. 2017 - Aug. 2018] De-Liang Yao [FZJ, until Dec. 2016]

• External collaborators:

Miguel Albaladejo [Valencia], Zhi-Hui Guo [Hebei Normal Univ.], Juan Nieves [Valencia], José Antonio Oller [Murcia], Chien-Yeah Seng [Shanghai], ...

Prof. Feng-Kun Guo [ITP/CAS] Prof. Ping Wang [IHEP/CAS]

Meng-Na Tang [ITP, from Aug. 2018] Fangcheng He [IHEP] Yusupujiang Salamu [IHEP]

Results I: Goldstone boson scattering off D-mesons $_3$

M. Du, F.-K. Guo, UGM, D. Yao, arXiv:1703.10836

- Already many studies of ϕ -D scattering to elucidate the structure of the light charm-strange mesons
- Most elaborate calculation so far:

★ covariant formulation to NNLO (EOMS scheme)

 \star explicit inclusion of D^* mesons (heavy quark symmetry) \rightarrow slide

• Results (LECs determined from a fit to existing LQCD data):

- \star Effects of D^* -mesons in the threshold region very small
- \star LQCD data can be described, but no improvement to NLO \rightarrow slide
- \hookrightarrow large kaon loop contributions in the crossed channel
- ***** interesting pion mass dependences:
- $\hookrightarrow D^*_{s0}(2317)$ stays below the DK threshold o slide
- \hookrightarrow Pole in (S, I) = (0, 1/2) similar to the $f_0(500) \rightarrow$ slide

Hanhart, Pelaez, Rios, Phys. Rev. Lett. 100 (2008) 152001

Results I: Goldstone boson scattering ... cont'd

• Pertinent diagrams for $\phi D \rightarrow \phi D$ [10 channels]

 $D^{0}K^{-} \rightarrow D^{0}K^{-}, D^{+}K^{+} \rightarrow D^{+}K^{+}$ $D^{+}\pi^{+} \rightarrow D^{+}\pi^{+}, D^{+}\eta \rightarrow D^{+}\eta$ $D^{+}_{s}K^{+} \rightarrow D^{+}_{s}K^{+}, D^{+}_{s}\eta \rightarrow D^{+}\eta$ $D^{+}_{s}\pi^{0} \rightarrow D^{+}_{s}\pi^{+}0, D^{0}\eta \rightarrow D^{0}\eta$ $D^{+}_{s}K^{+} \rightarrow D^{0}\pi^{0}, D^{+}_{s}K^{-} \rightarrow D^{0}\eta$

• Pertinent amplitudes: $\mathcal{V}_{\text{LO}}^{(\text{WT})}(s,t) = \mathcal{C}_{\text{LO}} \frac{s-u}{4F_0^2}$ $\mathcal{V}_{\text{EX}}^{(\text{WT})}(s,t) = \mathcal{C}_S \frac{g_0^2}{F_0^2} \mathcal{F}_S(s,t) + \mathcal{C}_U \frac{g_0^2}{F_0^2} \mathcal{F}_U(s,t)$ $\mathcal{V}_{\text{NLO}}^{(\text{CT})}(s,t) = \frac{1}{F_0^2} \left[-4h_0 \mathcal{C}_0^{(2)} + 2h_1 \mathcal{C}_1^{(2)} - 2\mathcal{C}_{24}^{(2)} \mathcal{H}_{24}(s,t) + 2\mathcal{C}_{35}^{(2)} \mathcal{H}_{35}(s,t) \right]$ $\mathcal{V}_{\text{NNLO}}^{(\text{CT})}(s,t) = \frac{4g_1}{F_0^2} \left[\mathcal{C}_{1a}^{(3)}(p_1 + p_3) \cdot (p_2 + p_4) + \mathcal{C}_{1b}^{(3)}(p_1 + p_3) \cdot p_2 \right] + \frac{4\mathcal{C}_{23}^{(3)}\mathcal{G}_{23}(s,t)}{F_0^2}$

Note: loop expressions too lengthy, esp. with D^* , LECs $h_{0,1,2,3,4,5}$ and $g_{1,2,3}$

CRC 110 - general meeting – A.5 – Ulf-G. Meißner – PKU, Aug. 29, 2017 • O < < / ∇ > > • •

• A typical NNLO fit

D.-L.Yao, M.-L.Du, F.-K.Guo, UGM, JHEP 1511 (2015) 058

• A typical NLO fit

M.-L. Du, F.-K. Guo, UGM, D.-L. Yao, arXiv:1703.10836

Results I: Goldstone boson scattering ... cont'd

M.-L. Du, F.-K. Guo, UGM, D.-L. Yao, arXiv:1703.10836

- Pion mass dependence
 - $\star D_{s0}^*(2317)$ trajectory

* Trajectory of the pole at 2.1 GeV

• recent LCQD at $M_{\pi}=150,290$ MeV

G.S. Bali et al., arXiv:1706.01247

Hanhart, Pelaez, Rios, PRL 100 (2008) 152001

• typical behaviour for a scalar meson

$$\hookrightarrow \text{prediction: } M_{D_{s0}^*}(290 \text{ MeV}) - M_{D_{s0}^*}(150 \text{ MeV}) = 36 \text{ MeV}$$

$$\hookrightarrow \text{lattice: } M_{D_{s0}^*}(290 \text{ MeV}) = 2384(3) \text{ MeV}, \quad M_{D_{s0}^*}(150 \text{ MeV}) = 2348(4) \text{ MeV}$$

Results I: Goldstone boson scattering ... cont'd

M. Albaladejo, P. Fernandez-Soler, F.-K. Guo, J. Nieves, Phys. Lett. B 767 (2017) 465

- Coupled-channels $D\pi$ - $D\eta, D_sK$ (I=1/2)
- use UCHPT in a finite volume
- LECs from earlier NLO analysis of D- ϕ scattering

L. Liu et al., Phys. Rev. D87 (2013) 014508

 excellent description of the energy levels from the Hadron Spectum Collaboration

G. Moir et al., JHEP 1610 (2016) 011

 \hookrightarrow while HadSpecColl finds only one pole, the UCHPT analysis reveals a two-pole (state) structure of the $D_0^*(2400)$ similar to the famous $\Lambda(1405)$

J.A. Oller, UGM, Phys. Lett. B 500 (2001) 263

7

CRC 110 - general meeting – A.5 – Ulf-G. Meißner – PKU, Aug. 29, 2017 · O < < / 🗸

Results II: $\pi\eta$ scattering and the $a_0(980)$

Z.-H. Guo, L. Liu, UGM, J.A. Oller, A. Rusetsky, Phys. Rev. D 95 (2017) 054004

- Combined analysis of scattering data (finite volume, unphysical pion mass) from the HadSpec Coll. & the $\gamma\gamma \to \eta\pi$ XS data from Belle
- combines two recently developed methods:

* coupled-channel finite volume formalism from Bonn (first FP + TR 16)
* coupled-channel U(3) UCHPT approach from Murcia (Oller et al.)

• Results:

- \star LO and NLO approaches describe all data/energy levels well \rightarrow slide
- \star Extrapolation to the physical $\pi,$ K, η and η' masses
- \hookrightarrow different results, mostly due to the bare $a_0(1450)$ pole at NLO \rightarrow slide
- \star Pole structure at heavy and physical pion masses
- \hookrightarrow at the heavy pion mass, results agree within errors for $a_0(980)$
- \hookrightarrow at the phys. pion mass, same $a_0(980)$ pole plus $a_0(1450)$ pole

Results II: $\pi\eta$ scattering and the $a_0(980)$ cont'd

Z.-H. Guo, L. Liu, UGM, J.A. Oller, A. Rusetsky, Phys. Rev. D 95 (2017) 054004

• A typical NLO fit (HadSpec Coll.) $[M_{\pi}=391\,{
m MeV},\,m_s\,{
m physical}]$

Belle:

S. Uehara et al. [Belle Collaboration], Phys. Rev. D 80 (2009) 032001

Hadron Spectrum Coll.:

J. J. Dudek et al. [Hadron Spectrum Collaboration], Phys. Rev. D 93 (2016) 094506

• $\gamma\gamma
ightarrow \pi\eta$ XS from Belle [phys.]

• $\pi\eta
ightarrow ar{K}K$ above 1 GeV [phys.]

0

 \leq

 $< \land \nabla$

Results III: Contractions in pion-pion scattering

N.R. Acharya, F.-K. Guo, UGM, C.-Y. Seng, Nucl. Phys. B 922 (2017) 480 [arXiv:1704.06754]

- So-called disconnected diagrams pose severe problems to LQCD practitioners
- \hookrightarrow analyze various contributions using two-flavor PQCHPT SU(4|2) (deg. masses) \rightarrow slide
- consider pion-pion scattering, one amplitude: T(s, t, u)

 \hookrightarrow well-known hierarchy (connected/singly-disconnected/doubly-disconnected) \hookrightarrow provide analytical results

CRC 110 - general meeting – A.5 – Ulf-G. Meißner – PKU, Aug. 29, 2017 · O < < / igtarrow > > • •

Digression: Partially Quenched QCD

• PQQCD for two flavors, equal masses:

e.g. Sharpe, hep-lat/0607016

$$Q = (\underbrace{j\,k}_{\text{valence}} \underbrace{u\,d}_{\text{sea}} | \underbrace{\tilde{j}\,\tilde{k}}_{\text{ghost}})^T$$

• Invariance under $Q_{L/R} \to U_{L/R}Q_{L/R}$, with $U_{L/R} \in \mathrm{SU}(4|2)_{L/R}$ where $\mathrm{SU}(4|2)_{L/R}$ is a special unitary graded symmetry group

•
$$(a|b)$$
-graded matrix: $A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} = \begin{pmatrix} a \times a & a \times b \\ b \times a & b \times b \end{pmatrix}$, $A_{nm} \in \mathbb{C}$

 \hookrightarrow requires the the supertrace: $\operatorname{Str}[A] \equiv \sum_{i=1}^{a} A_{ii} - \sum_{i=a+1}^{a+b} A_{ii}$

• Corresponding EFT: PQCHPT $SU(4|2)_L \times SU(4|2)_R \rightarrow SU(4|2)_V$

$$\hookrightarrow 6^2 - 1 = 35$$
 Goldstone bosons, collected in $U = \exp\left\{rac{2i}{F_0}\sum_{a=1}^{35} \phi^a T^a
ight\}$

CRC 110 - general meeting – A.5 – Ulf-G. Meißner – PKU, Aug. 29, 2017 · O < < / ∇ > > • •

Results III: Contractions in ... cont'd

N.R. Acharya, F.-K. Guo, UGM, C.-Y. Seng, Nucl. Phys. B 922 (2017) 480 [arXiv:1704.06754]

• Calculate scattering lengths for various contractions: $a_X^{IJ} = \lim_{q^2 \to 0} \frac{ReT_X^{IJ}(4M_{\pi}^2 + 4q^2)}{(q^2)^J}$

	$10^2 a_X^{00}$	$10^2 a_X^{20}$	$10^2 M_\pi^2 a_X^{11}$	$10^4 M_\pi^4 a_X^{02}$	$10^4 M_\pi^4 a_X^{22}$
D	0.35 ± 0.24	0.35 ± 0.24	0.02 ± 0.26	3.5 ± 2.0	3.5 ± 2.0
С	2.41 ± 0.12	-4.81 ± 0.23	0	0.95 ± 0.96	-1.9 ± 1.9
R	14.8 ± 0.7	0	3.59 ± 0.26	6.7 ± 7.8	0
V	2.48 ± 0.38	0	0	0.8 ± 7.3	0
Total	20.0 ± 0.2	-4.46 ± 0.07	3.61 ± 0.04	11.9 ± 0.8	1.54 ± 0.71

with the LECs $\bar{\ell}_i$ from Bijnens/Ecker (2016) and $L_i^{PQ,r}$ from Boyle et al. (2016)

• find combinations least dependent on new PQ LECs such as:

$$a_V^{00} - \frac{3}{2}a_D^{00} = \frac{M_\pi^4}{\pi F_\pi^4} \left[\frac{3\bar{\ell}_4}{64\pi^2} - 3L_5^{PQ,r} + \frac{9}{512\pi^2} + \frac{3F_\pi^2}{4M_\pi^2}\mu_\pi \right]$$

 \hookrightarrow if scatt. lengths for various contractions can be extracted from LQCD data (t.b.p.) then use this framework to extract noisy LECs from less noisy combinations

<u>Milestones</u>

2016/2

• Calculating the connected, singly-disconnected and doubly-disconnected contributions separately to the isoscalar $\pi\pi$ scattering amplitude

 \rightarrow fully achieved \checkmark

2017

• Analysis of the pion mass dependence for the $Z_c(3900)$ including the $DD\pi$ three-body system in a finite volume

 \rightarrow in the works (with Bonn/Jülich/Bochum/ITP/ITEP Moscow people)

- Extension of the Wick contraction calculation to the scattering processes involving kaons and the eta meson
 - \rightarrow first proof for two-flavor case (extraction from LQCD)
 - ightarrow next application: weak pion-nucleon coupling h_π
 - \rightarrow then SU(3) extension

- V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, U.-G. Meißner and A. V. Nefediev, "Heavy-quark spin symmetry partners of the X (3872) revisited," Phys. Lett. B 763 (2016) 20 [arXiv:1605.09649 [hep-ph]].
- M. L. Du, F. K. Guo and U.-G. Meißner, "One-loop renormalization of the chiral Lagrangian for spinless matter fields in the SU(N) fundamental representation," J. Phys. G 44 (2017) 014001 [arXiv:1607.00822 [hep-ph]].
- M. L. Du, F. K. Guo and U.-G. Meißner, "Subtraction of power counting breaking terms in chiral perturbation theory: spinless matter fields," JHEP **1610** (2016) 122 [arXiv:1609.06134 [hep-ph]].
- M. L. Du, F.-K. Guo, U. G. Meißner and D. L. Yao, "Aspects of the low-energy constants in the chiral Lagrangian for charmed mesons," Phys. Rev. D 94 (2016) no.9, 094037 [arXiv:1610.02963 [hep-ph]].
- M. L. Du, F. K. Guo, U.-G. Meißner and D. L. Yao, "Study of open-charm 0⁺ states in unitarized chiral effective theory with one-loop potentials," arXiv:1703.10836 [hep-ph] (submitted for publication).
- M. Albaladejo, P. Fernandez-Soler, F.-K. Guo and J. Nieves, "Two-pole structure of the $D_0^*(2400)$," Phys. Lett. B **767** (2017) 46 [arXiv:1610.06727 [hep-ph]].
- N. R. Acharya, F. K. Guo, U.-G. Meißner and C. Y. Seng, "Connected and Disconnected Contractions in Pion-Pion Scattering," Nucl. Phys. B 922 (2017) 480 [arXiv:1704.06754 [hep-lat]].
- X. G. Wang, C. R. Ji, W. Melnitchouk, Y. Salamu, A. W. Thomas and P. Wang, "Strange quark asymmetry in the proton in chiral effective theory," Phys. Rev. D 94 (2016) no.9, 094035 [arXiv:1610.03333 [hep-ph]].
- H. Li and P. Wang, "Chiral extrapolation of nucleon axial charge g_A in effective field theory," Chin. Phys. C 40 (2016) no.12, 123106 [arXiv:1608.03111 [hep-ph]].
- F.-K. Guo, C. Hanhart, U.-G. G. Meißner, Q. Wang, Q. Zhao, B.-S. Zuo, "Hadronic Molecules," arXiv:1705.00141 [hep-ph] (submitted for publication to *Rev. Mod. Phys.*)

 $\cdot \circ \triangleleft < \land \lor > \triangleright$

Summary & outlook

- Project **A.5** is on a good track
- Fruitful collaborations with other projects:

B.3, **B.4** – on-going A.2, B.5 – starting

• stay tuned ...

CRC 110 - general meeting – A.5 – Ulf-G. Meißner – PKU, Aug. 29, 2017