Flavor Singlet Mesons from Lattice QCD

Wei Sun, Yunheng Ma, Zhaofeng Liu Pls: Ying Chen, Carsten Urbach (CRC B5)

Institute of High Energy Physics, Chinese Academy of Sciences

CRC110 meeting, Aug 29 - 31, Peking University, Beijing

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. Introduction

- 2. Lowest-lying flavor singlet states in $N_f = 2$ LQCD
- 2.1 Ground state scalar, pseudoscalar and tensor glueballs
- 2.2 Further study of pseudoscalar channel
- 3. More about scalar state
- 4. Summary

Motivation

- Conventional quark model classifies $q\bar{q}$ bound states into $SU(N_f)$ flavor multiplets.
- Non-Abelian nature of QCD suggests other non- $q\bar{q}$ meson states.
- Glueballs, hybrids, tetraquarks ...
- Study lowest-lying flavor singlet scalar, pseudoscalar and tensor states.
- $U_A(1)$ anomaly relate flavor singlet pseudoscalar with topological charge density.
- For pseudoscalar channel, use conventional glueball & topological operators (CLQCD) and $q\bar{q}$ operator(C.Urbach, ETMC)

Glueball studies in Lattice QCD

Quenched approximation:

- B.Berg and A.Billoire, Nuclear Physics B221 (1983):109-140
- C.Morningstar and M.Peardon, *Phys.Rev.*D56(1997):4043-4061
- C.Morningstar and M.Peardon, Phys.Rev.D60(1999)034509
- H.B.Meyer and M.J.Teper, Phys.Lett.B605(2005)344-345
- Y.Chen et al, Phys.Rev.D73(2006)014516

• ...

Dynamical sea quark:

- G.S.Bali et al, Phys. Rev. D62(2000)054503
- A.Hart and M.Teper, Phys.Rev.D65(2002)034502
- UKQCD, Phys. Rev. D82(2010)034501
- E.Gregory et al, JHEP 10(2012)170

• ...

.owest-lying flavor singlet states in $N_f = 2$ LQCD More about scalar state Summary

Lowest-lying glueballs in quenched LQCD

- Lowest states with $J^{PC}=0^{++},\ 2^{++},\ 0^{-+}$
- Masses around 1.7 GeV, 2.4 GeV and 2.6 GeV respectively.

[Y. Chen et al, Phys. Rev. D 73, 014516(2006)]

BESIII results on J/ψ radiative decay

- Radiative decay of J/ψ is a gluon rich process.
- BESIII Collaboration observed isosinglet scalar, pseudoscalar and tensor resonances in

 $J/\psi \longrightarrow \gamma X \longrightarrow \gamma \eta \eta$ and $J/\psi \longrightarrow \gamma X \longrightarrow \gamma \phi \phi$.

Resonance	$Mass(MeV/c^2)$	${\rm Width}({\rm MeV}/c^2)$	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759{\pm}6^{+14}_{-25}$	$172{\pm}10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	$25.0~\sigma$
$f_0(2100)$	$2081{\pm}13^{+24}_{-36}$	$273\substack{+27+70\\-24-23}$	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9 σ
$f_{2}^{'}(1525)$	$1513{\pm}5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0 σ
$f_2(1810)$	$1822\substack{+29+66\\-24-57}$	$229\substack{+52+88\\-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334\substack{+62+165\\-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6 σ

[M.Ablikim et al, Phys.Rev.D.87, 092009 (2013)]

[M.Ablikim et al, Phys. Rev. D.93, 112011 (2016)]

Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	$B.F.(\times 10^{-4})$	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+21}_{-11}$	$185^{+12}_{-14}{}^{+43}_{-17}$	$(2.40\pm0.10^{+2.47}_{-0.18})$	$28 \ \sigma$
$\eta(2100)$	2050^{+30+75}_{-24-26}	$250^{+36+181}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	$22 \; \sigma$
X(2500)	$2470^{+15+101}_{-19-23}$	230^{+64+56}_{-35-33}	$(0.17\pm0.02^{+0.02}_{-0.08})$	$8.8 \ \sigma$
$f_0(2100)$	2101	224	$(0.43\pm0.04^{+0.24}_{-0.03})$	$24 \ \sigma$
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5 σ
$f_2(2300)$	2297	149	$(0.44\pm0.07^{+0.09}_{-0.15})$	$6.4 \ \sigma$
$f_2(2340)$	2339	319	$(1.91\pm 0.14^{+0.72}_{-0.73})$	$11 \; \sigma$
0^{-+} PHSP			$(2.74\pm0.15^{+0.16}_{-1.48})$	$6.8 \ \sigma$

5/23

.owest-lying flavor singlet states in $N_f = 2$ LQCD More about scalar state Summary

Lattice study on J/ψ radiatively decay into glueballs

• From experimental $J/\psi \longrightarrow \gamma X \longrightarrow \gamma \pi \pi$, $X \longrightarrow \pi \pi$ we can estimated

$$Br(J/\psi \longrightarrow \gamma f_0(1710)) = 2.5 \times 10^{-3}$$
$$Br(J/\psi \longrightarrow \gamma f_0(1500)) = 3.1 \times 10^{-4}$$

• Quenched LQCD predicted the J/ψ radiatively decay into scalar glueball with branching ratio :

[L.C Gui et al, CLQCD Collaboration, Phys.Rev.Lett. 110 (2013) no.2, 021601]

$$Br(J/\psi \longrightarrow \gamma G_{0^{++}}) = 3.8(9) \times 10^{-3},$$

which suggested the $f_0(1710)$ as scalar glueball candidate.

• J/ψ radiative decay into tensor glueball gives [Yi-Bo Yang et al, CLQCD Collaboration, *Phys. Rev. Lett.* **111**, 091601 (2013)]

$$Br(J/\psi \longrightarrow \gamma G_{2^{++}}) = 1.1(2) \times 10^{-2}$$

relatively large branching ratio.

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

Gauge configuration details

- limited resources, GPU cluster at Hunan Normal University(24 K40 cards).
- USQCD Chroma software used.
- $N_f = 2$ anisotropic gauge configuration.
- Tadpole-improved gauge action and Clover-improved Wilson fermion action.
- Ground state 0⁺⁺, 2⁺⁺, 0⁻⁺ was investigated in our study.
 [W. Sun et al, CLQCD Collaboration, arXiv:1702.08174]

Table: Parameters of configurations

β	$L^3 \times T$	ξ	a_s	m_{π}	N_{conf}
2.5	$12^3 \times 128$	5	0.114 fm	$\sim 650~{\rm MeV}$	4800
2.5	$12^3 \times 128$	5	0.118 fm	$\sim 938 {\rm MeV}$	10400

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

Glueball operators construction

- Particle states denoted by J^{PC} in continuum
- $SU(2)(continuum) \xrightarrow{reduction} {}^2O(lattice)$
- Glueballs are bosons $(^{2}O \rightarrow O)$
- Octahedral group O has five IRs, A_1 , A_2 , E, T_1 , T_2 , denoted by R
- Subduced representation of SU(2) with respect to group O is generally reducible(J ≥ 2)
- $R \nleftrightarrow J (A_1 \longrightarrow J = 0, J = 4, ...)$
- Assuming that the ground state on the lattice corresponds to the lowest spin state in continuum
- Using different spatial oriented Wilson loops to construct glueball operators with quantum number denoted by R^{PC}

R	0	1	2	3	4	5
A_1	1	0	0	0	1	0
A_2	0	0	0	1	0	0
E	0	0	1	0	1	1
T_1	0	1	0	1	1	2
T_2	0	0	1	1	1	1

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

Effective mass plateaus

- 24 operators $\phi^{(R^{PC})}_{lpha}$ for each R^{PC}
- ullet Use the variational method to get a optimal operator $\Phi_i^{R^{PC}}$
- The optimal correlation function is

$$\tilde{C}_i^{(R^{PC})}(t) = \sum_{\tau} \langle 0 | \Phi_i^{(R^{PC})}(t+\tau) \Phi_i^{(R^{PC})}(\tau) | 0 \rangle,$$

Use two state union fit

$$\begin{split} \tilde{C}_1^{(R^{PC})}(t) &= W_{11}^{(R^{PC})} e^{-m_1 t} + W_{12}^{(R^{PC})} e^{-m_2 t}, \\ \tilde{C}_2^{(R^{PC})}(t) &= W_{21}^{(R^{PC})} e^{-m_1 t} + W_{22}^{(R^{PC})} e^{-m_2 t}, \end{split}$$

Introduction Introduction Lowest-lying flavor singlet states in $N_f=2\,{\rm LQCD}$ More about scalar state Summary

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

Effective mass plateaus $(A_1^{++} \& A_1^{-+})$

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Lowest-lying flavor singlet states in } N_f = 2 \mbox{LQCD} \\ \mbox{More about scalar state} \\ \mbox{Summary Summary} \end{array}$

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

Effective mass plateaus (E^{++} & T_2^{++})

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

Fitted results

	m_π (MeV)	m_{0++} (MeV)	$m_{2^{++}}$ (MeV)	$m_{0^{-+}}$ (MeV)
$N_{f} = 2$	938	1397(25)	2367(35)	2559(50)
[this work]	650	1480(52)	2380(61)	2605(52)
$N_f = 2 + 1$	360	1795(60)	2620(50)	
[E. Gregory]				
quenched [C. Morningstar]	_	1710(50)(80)	2390(30)(120)	2560(35)(120)
quenched [Y. Chen]	_	1730(50)(80)	2400(25)(120)	2590(40)(130)

12 / 23

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

Fitted results

Table: Ground state meson spectrum

$m_{PS}(MeV)$	$m_V({\sf MeV})$	$m_S({\sf MeV})$	$m_{G^{0++}}(MeV)$
650(4)	993(16)	1362(53)	1480(52)
938(3)	1164(10)	1473(28)	1397(25)

- 0^{++} glueball mass is relatively lighter than previous results and close to the 0^{++} $q\bar{q}$ meson mass on our lattice (actually isovector a_0).
- Relatively large mass above 2 GeV for pseudoscalar glueball
- Physical isosinglet pseudoscalar around 1 GeV
- Further study on pseudoscalar state by topological charge density
- Heavy quark mass, sea quark effects?

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

$\eta'(\eta_2)$ v.s. pseudoscalar glueball

• $U(1)_A$ anomaly gives

$$\partial_{\mu}A^{\mu}(x) = 2mP(x) - N_f q(x)$$

• P(x):flavor singlet pseudoscalar density

$$P(x) = \psi(\bar{x})\gamma_5\psi(x)$$

• q(x):topological charge density

$$q(x) = \frac{1}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} Tr F_{\mu\nu} F_{\rho\sigma}$$

• Study correlation functions of P(x)(C.Urbach) and q(x)(this work) respectively.

 $\begin{array}{l} \mbox{Introduction} \\ \mbox{Lowest-lying flavor singlet states in $N_f=2$ LQCD} \\ \mbox{More about scalar state} \\ \mbox{Summary $Summary S

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

correlation of q(x)

$$C_q(x-y) = \langle q(x)q(y) \rangle$$

・ロ ・ ・ 一部 ・ ・ 注 ト ・ 注 目 ・ の へ や 15 / 23 Introduction Introduction Lowest-lying flavor singlet states in $N_f=2\,\rm LQCD$ More about scalar state Summary

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

correlation of q(x)

m_{π}	fit range(a_s)	$m_{\eta'}a_s$	$m_{\eta'}(MeV)$	χ^2/dof
938 MeV	3.74-5.92	0.856(21)	1481(36)	1.01
$650 {\rm ~MeV}$	3.87-5.48	0.514(22)	890(38)	1.43

- For quenched study, the flavor singlet pseudoscalar mass agrees with pseudoscalar glueball.
 [A. Chowdhury et al., *Phys. Rev.* D 91 (2015)074507]
- N_f = 2 + 1 result agrees with physical η'.
 [H. Fukaya et al, *Phy. Rev.* D92 (R), 111501 (2015)]

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

correlation of P(x) (C.Urbach, Lattice 2017)

- N_f = 2 Wilson twisted mass clover fermion and Iwasaki gauge action.
- lattice spacing $a \approx 0.09$ fm.
- three pion mass from 130 to 350 MeV.
- two volumns per poin mass from L/a = 24 to L/a = 64.
- correlation function after Wick contraction contains connected and disconnected part

$$C_{\eta_2} = C_{\eta_2}^{conn} - C_{\eta_2}^{disc}$$

 stochastic Laplace-Heaviside method calculating correlation functions.

Introduction Lowest-lying flavor singlet states in $N_f=2\,\rm LQCD$ More about scalar state Summary

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

correlation of P(x) (C.Urbach, Lattice 2017)

• $r_0 = 0.4907(5)$ fm gives

 $M_{\eta_2} = 768(24) MeV$

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

summary of pseudoscalar results

	P(x)	q(x)	O_G
$N_f = 0$		2563(34)MeV	2590(40)(130)MeV
		A.Chowdhury, PRD91(2015)	Y.Chen, PRD73(2006)
$N_f = 2$	768(24)MeV	890(38)MeV	2605(52)MeV
	C.Urbach, Lattice2017	this work $m_{\pi}=650 { m MeV}$	this work $m_\pi=650{ m MeV}$
$N_f = 2 + 1$	947(142)MeV	1019(119)MeV	
	N.Christ, PRL105(2010)	JLQCD, PRD92(2015)	
$N_f = 2 + 1 + 1$	1006(54)(38)MeV		
	C.Michael, PRL111(2013)		

- P(x): $\bar{\psi}\gamma_5\psi$
- q(x): topological charge density
- O_G : glueball operators

Ground state scalar, pseudoscalar and tensor glueballs Further study of pseudoscalar channel

continuum form of operators

• The continuum form of our pseudoscalar glueball operator is

$$\phi^{A_1^{-+}}(\mathbf{x},t) \sim \epsilon_{ijk} Tr B_i(\mathbf{x},t) D_j B_k(\mathbf{x},t) + O(a_s^2)$$

• Topological charge density operator goes like

$$q(x) \propto \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} \propto \mathbf{E}(x) \cdot \mathbf{B}(x)$$

• The large difference of our glueball and $\eta'(\eta_2)$ mass can be explained.

Preliminary results on dispersion relation

- Single particle or multi-particle state?
- Dispersion relation of one-particle and lowest free two pion state

Mixing of flavor singlet $q\bar{q}$ meson and glueball in progress

- The scalar qq̄ meson (actually isovector a₀) mass on our lattice is very close to the obtained scalar glueball mass.
- Mixing of glueball and isosinglet *qq̄* meson may need be consid-ered.
- Disconnected quark loops can be calculated by wall source technique without gauge fixing.

Table: Ground state meson spectrum

$m_{PS}(MeV)$	$m_V({\sf MeV})$	$m_S({\sf MeV})$	$m_{G^{0++}}(MeV)$
650(4)	993(16)	1362(53)	1480(52)
938(3)	1164(10)	1473(28)	1397(25)

Summary

- The lowest-lying spectrum of 0^{++} , 0^{-+} and 2^{++} glueballs have been calculated in $N_f = 2$ lattice QCD with $m_{\pi} \sim 650$ MeV and $m_{\pi} \sim 938$ MeV.
- Results of 2^{++} and 0^{-+} states are consistent with quenched lattice results.
- The 0⁻⁺ glueball mass are much larger(this work) than ground state flavor singlet 0⁻⁺ meson.(this work & C.Urbach)
- Mixing of scalar glueball and flavor singlet scalar mesons is in progress.

Thank you!

Glueball operators construction

• Operators with ${\cal R}^{PC}$ quantum number are linear combinations of Wilson loops

•
$$P = \pm, \ C = +$$

$$\phi_i^{R^{PC}} = \sum_{g \in O} c_R ReTr[g \circ W_i(\mathbf{x}, t) \pm \mathcal{P}g \circ W_i(\mathbf{x}, t)\mathcal{P}^{-1}]$$

• $P = \pm, C = -$

$$\phi_i^{R^{PC}} = \sum_{g \in O} c_R ImTr[g \circ W_i(\mathbf{x}, t) \pm \mathcal{P}g \circ W_i(\mathbf{x}, t)\mathcal{P}^{-1}]$$

where $W_i(\mathbf{x}, t)$ denote prototype of Wilson loop, g is vector representation of group O, \mathcal{P} is space inversion, c_R is combination coefficient based on group theory.

Lattice study on J/ψ radiatively decay into glueballs

For scalar glueball candidates $f_0(1500)$ and $f_0(1710)$, the experimental result of J/ψ radiative decay are as following: [C. Patrignani et al.(Particle Data Group), Chin. Phys. C, 40, 100001 (2016)]

decay channel	branching ratio
$J/\psi \longrightarrow \gamma f_0(1500) \longrightarrow \gamma \pi \pi$	$(1.09 \pm 0.24) \times 10^{-4}$
$J/\psi \longrightarrow \gamma f_0(1500) \longrightarrow \gamma \eta \eta$	$(1.7^{+0.6}_{-1.4}) \times 10^{-5}$
$J/\psi \longrightarrow \gamma f_0(1710) \longrightarrow \gamma K\bar{K}$	$(1.00^{+0.11}_{-0.09}) \times 10^{-3}$
$J/\psi \longrightarrow \gamma f_0(1710) \longrightarrow \gamma \pi \pi$	$(3.8 \pm 0.5) \times 10^{-4}$
$J/\psi \longrightarrow \gamma f_0(1710) \longrightarrow \gamma \omega \omega$	$(3.1 \pm 1.0) \times 10^{-4}$
$J/\psi \longrightarrow \gamma f_0(1710) \longrightarrow \gamma \eta \eta$	$(2.4^{+1.2}_{-0.7}) \times 10^{-4}$

Lattice study on J/ψ radiatively decay into glueballs

• Branching ratio of $J/\psi \longrightarrow \gamma X$ (X for f_0 etc.):

$$Br(J/\psi \longrightarrow \gamma X) = \frac{Br(J/\psi \longrightarrow \gamma X \longrightarrow \gamma PP)}{Br(X \longrightarrow PP)}$$

◆□> <回> < => < => < => < => < <</p>

2/4

Lattice study on J/ψ radiatively decay into glueballs

• Branching ratio of $J/\psi \longrightarrow \gamma X$ (X for f_0 etc.):

$$Br(J/\psi \longrightarrow \gamma X) = \frac{Br(J/\psi \longrightarrow \gamma X \longrightarrow \gamma PP)}{Br(X \longrightarrow PP)}$$

decay channel	branching ratio	$Br(J/\psi \longrightarrow \gamma f_0(1500))$
$f_0(1500) \longrightarrow \pi\pi$	$(34.9 \pm 2.3)\%$	3.1×10^{-4}
$f_0(1500) \longrightarrow \eta\eta$	$(5.1 \pm 0.9)\%$	3.3×10^{-4}
decay channel	branching ratio	$Br(J/\psi \longrightarrow \gamma f_0(1710))$
$f_0(1710) \longrightarrow K\bar{K}$	0.36 ± 0.12	2.8×10^{-3}
$f_0(1710) \longrightarrow \eta\eta$	0.22 ± 0.12	1.1×10^{-3}
$f_0(1710) \longrightarrow \pi\pi$	0.15	2.5×10^{-3}

Lattice study on J/ψ radiatively decay into glueballs

decay channel	branching ratio	$Br(J/\psi \longrightarrow \gamma f_0(1500))$
$f_0(1500) \longrightarrow \pi\pi$	$(34.9 \pm 2.3)\%$	3.1×10^{-4}
$f_0(1500) \longrightarrow \eta\eta$	$(5.1 \pm 0.9)\%$	3.3×10^{-4}
decay channel	branching ratio	$Br(J/\psi \longrightarrow \gamma f_0(1710))$
$f_0(1710) \longrightarrow K\bar{K}$	0.36 ± 0.12	2.8×10^{-3}
$f_0(1710) \longrightarrow \eta\eta$	0.22 ± 0.12	1.1×10^{-3}
$f_0(1710) \longrightarrow \pi\pi$	0.15	2.5×10^{-3}

• Quenched Lattice QCD predicted the J/ψ radiatively decay into scalar glueball with branching ratio : [Long-Cheng Gui et al, CLQCD Collaboration, Phys.Rev.Lett. 110 (2013) no.2, 021601]

$$Br(J/\psi \longrightarrow \gamma G_{0^{++}}) = 3.8(9) \times 10^{-3},$$

which suggested the $f_0(1710)$ as scalar glueball candidate.

tensor glueball & $f_2(2340)$

• Flavour blindness of glueball

$$\Gamma(G \longrightarrow \pi\pi : K\bar{K} : \eta\eta : \eta\eta' : \eta'\eta') = 3 : 4 : 1 : 0 : 1$$

$$\Gamma(G \longrightarrow \eta\eta) / \Gamma(G \longrightarrow PP) \sim 10\%$$

 Pseudo-Pseudoscalar final states in tensor glueball decay in Dwave, considering centrifugal barrier effect,

$$\Gamma(G \longrightarrow M\bar{M}) = \eta \alpha \frac{k^{2L+1}}{m_G^{2L}} = \frac{\eta \alpha}{m_G} (\frac{k}{m_G})^{2L+1}$$
$$\frac{k}{m_G} = \frac{1}{2} \sqrt{1 - (\frac{2m_M}{G})^2} \sim 0.5 - 0.3$$

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三日日 のへ(や 3/4

tensor glueball & $f_2(2340)$

 Partial width of Glueball decay into pseudoscalar-pseudoscalar final states suppressed to

$$Br(G_{2^+} \longrightarrow PP) \sim O(10\%)$$

BESIII results give

$$Br(J/\psi \longrightarrow \gamma f_2(2340) \longrightarrow \eta \eta) = 5.6(2.3) \times 10^{-5}$$

• Large branch ratio of $f_2(2340)$ in J/ψ decay

$$Br(J/\psi \longrightarrow \gamma f_2(2340)) \sim 10^{-2}$$

Consistent with quenched LQCD