Production of Near Threshold States in e^+e^- Annihilations

CRC110 B.3 Project Pl's: C. Hanhart, Q. Wang, Q. Zhao

Zheng Cao

Theoretical Physics Division, Institute of High Energy Physics

Constituent QM & Hadron Exotics

"XYZ" States and Nearby Thresholds

Most of the heavily flavored "XYZ" states are intimately related to the nearby S-wave thresholds:

Charmonium-like **Bottomonium-like**

B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 95 (2005) 142001
M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 111, no. 24, 242001
M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 110, 252001
A. Bondar et al. [Belle Collaboration], Phys. Rev. Lett. 108 (2012) 122001

Two Nearby Thresholds by Spin Splitting

Equal spin splitting of mass of meson doublets with same light degree of freedom:

Same splitting in the beauty-strange meson doublets:

$$m_{B_{S1}} - m_{B_{S0}} = m_{B_S^*} - m_{B_S} + O(1 \text{ MeV}) \approx 48 \text{ MeV}$$

Dynamically Generated States

In Godfrey-Isgur quark model, both $\psi(4S)$ and $\psi(2D)$ have masses close to $D_{s1}D_s$ and $D_{s0}D_s^*$ thresholds and can couple to them in S-wave:

$$m_{\psi(4S)} = 4.45 \text{GeV}$$
 $m_{\psi(2D)} = 4.194 \text{GeV}$

With the strong interaction of these two thresholds, the propagator of $\psi(4S)$ and $\psi(2D)$ can be taken as [1]:

$$G = \frac{1}{D_1 D_2 - |D_{12}|^2} \begin{pmatrix} D_1 & D_{12} \\ D_{21} & D_2 \end{pmatrix}$$
$$= \frac{G_{12}}{\det[G_{12}]}$$

Where

[1] N.N.Achasov, A.V.Kiselev, Phys. Lett.B534,83

Finding Physical Poles

Since $G = \frac{G_{12}}{|G_{12}|}$, finding the physical poles is equivalent to set $|G_{12}| = 0$ and solve \sqrt{s} .

Pole 1 = 4.17 GeV $\approx m_{\psi(4160)}$

Pole 2 = 4.41 GeV
$$\approx m_{\psi(4415)}$$

with $g=7 \text{ GeV}^{-1/2}$

So we regard $\psi(4415)$ and $\psi(4160)$ can be mixing states between the dynamically generated states of the strong S-wave interactions with thresholds and the quark model states $\psi(4S)$ and $\psi(2D)$.

Physical Propagator of $\psi(4415)$

Physical propagator of $\psi(4415)$:

To get the physical pole at m_{1p} , expand $\Sigma_1(E)$ at m_{1p} to the first order:

$$\frac{2m_1i}{N_{1p}} = \frac{i}{E - m_1 - \Sigma_1(E)}$$
$$= \frac{iZ}{E - m_1p - Z\widetilde{\Sigma}_1(E)}$$

The Study of $Z_c(3900)$

Q. Wang, C. Hanhart and Q. Zhao, Phys. Rev. Lett. 111, 132003

Cusp Effects in $\psi(4415)$

Possible triangle diagrams of $\psi(4415) \rightarrow J/\psi KK$:

Lagrangians in ChPT:

$$\mathcal{L}_{1} = g_{S} \langle J \bar{S}_{a}^{\dagger} \bar{H}_{a} + J \bar{H}_{a}^{\dagger} \bar{S}_{a} \rangle$$
$$\mathcal{L}_{2} = ih \langle \bar{H}_{a} S_{b} \gamma_{\mu} \gamma_{5} \mathcal{A}_{ba}^{\mu} \rangle$$
$$\mathcal{L}_{3} = C_{S} \langle J \bar{H}_{b}^{\dagger} \gamma_{\mu} \gamma_{5} \bar{H}_{a} \mathcal{A}_{ba}^{\mu} \rangle$$

Triangle Singularity

 And the TS region depending on s₃:

$$s_N = (m_2 + m_3)^2, \ s_C = (m_2 + m_3)^2 + \frac{m_3}{m_1}[(m_2 - m_1)^2 - s_3],$$

 $s_{2N} = (m_1 + m_3)^2, \ s_{2C} = (m_1 + m_3)^2 + \frac{m_3}{m_2}[(m_2 - m_1)^2 - s_3].$

L. D. Landau, Nucl. Phys. 13 (1959) 181 X. H. Liu, M. Oka and Q. Zhao, Phys. Lett. B 753

Cusp Effects in $\psi(4415)$

- Since the mass of D_{s1} is slightly smaller than that of D^*K , and the mass of D_{s0} is slightly smaller than that of DK, only the lower-order singularity can happen here.
 - Invariant mass spectrum of $J/\psi K$ in $\psi(4415) \rightarrow J/\psi K K$

Left one: Cusp effects at different initial energy from 4.5 to 4.8 GeV

Right one: Compare with a introduced physical pole with $\Gamma = 100 \text{ MeV}$

Total Cross Section

Total cross section effected by the physical pole at 4.42 GeV can be taken as a prediction for future experiments.

Recent BESIII Results on $e^+e^- \rightarrow \psi(2S)\pi\pi$

• $e^+e^- \rightarrow \psi(3686)\pi^+\pi^-$ in BESIII

Recently, BESIII study the process $e^+e^- \rightarrow \psi(2S)\pi\pi$ at center-of-mass energies \sqrt{s} from 4.008 to 4.600 GeV, with a total structure near 4.4 GeV.

Born cross section of $e^+e^- \to \pi^+\pi^-\psi(3686)$

BESIII, arXiv: 1703.08787

Z. Cao, Production of Near Threshold States

Our Proposal

Z. Cao, Production of Near Threshold States

Individual Channel Contribution

Z. Cao, Production of Near Threshold States

Total Line Shapes

Adding up the contributions from all channels with one free parameter between the [THH] and [SHH] sets we get:

The diagrams for $e^+e^- \rightarrow \psi'\pi\pi$ via intermediate triangle D meson loops.

Though the third diagram at $\sqrt{s} = 4.358$ GeV differs from the experimental data more significantly, the total trend of the line shapes as \sqrt{s} increases still keeps. From this point of view, it's clear that the impact from thresholds effects plays essential role in line shapes of the $\psi'\pi$ 2-body invariant mass spectrum.

Summary

- By investigating the very closely lied $D_{s1}D_s$ and $D_{s0}D_s^*$ thresholds at about 4.43 GeV we show that the $\psi(4415)$ and $\psi(4160)$ can be mixing states between the dynamically generated states of the strong S-wave interactions with thresholds and the quark model states $\psi(4S)$ and $\psi(2D)$.
 - We continue to investigate the $e^+e^- \rightarrow J/\psi KK$ final states spectrum and the invariant mass spectrum of $J/\psi K$ to search for signals from this mixing mechanism. We show that a pole structure would be different from open threshold CUSP effects and the measurement of the cross section line shape of $J/\psi KK$ can be sensitive to the dynamically generated state and clarify the impact from such strong S-wave open thresholds.
- With different thresholds we also investigate the $e^+e^- \rightarrow \psi'\pi\pi$ final states to see the line shapes of $\psi'\pi$ invariant mass spectrum with different \sqrt{s} . We find that the impact from threshold effects brings the key features like the experiments of BESIII showed recently.

Thanks for your attention!