B5: Exotic States from Lattice QCD

Ying Chen, Marcus Petschlies, Carsten Urbach

HISKP, University of Bonn
Bethe Center for Theoretical Physics, European Twisted Mass Collaboration

CRC110 General Assembly, 8/2017

Personnel

- Principal Investigators:

Ying Chen
Carsten Urbach

- Students:

Yunheng Ma
Max Oehm
Fernando Romero López
Martin Ueding
Marcus Werner
Wei Sun

- Associate Professor: Zhaofeng Liu
- Post-Docs:

Marcus Petschlies
Liuming Liu
Bartosz Kostrzewa

- External Collaborator: Bernard Metsch
- reduced symmetries on the lattice
\Rightarrow challenging Lüscher analysis
- have developed fully automatic
- Clebsch-Gordan
- subduction
- induction
- contraction

codes

- applicable to arbitrary channels
- here: ρ meson phase shift for different lattice irreps
- analysis in progress

$\pi-\pi$ Scattering with $I=0$: Topologies

- two-particle operator for $I=0$ (with $\Gamma=\gamma_{5}, 1$):

$$
\mathcal{O}_{\Gamma}^{I=0}=\frac{1}{\sqrt{3}}\left(\mathcal{O}_{\Gamma}^{+} \mathcal{O}_{\Gamma}^{-}+\mathcal{O}_{\Gamma}^{-} \mathcal{O}_{\Gamma}^{+}+\mathcal{O}_{\Gamma}^{0} \mathcal{O}_{\Gamma}^{0}\right), \quad \text { e.g. } \quad \mathcal{O}_{\gamma_{5}}^{ \pm, 0} \equiv \pi^{ \pm, 0}
$$

- isospin limit: only four diagrams contribute

$$
\begin{gathered}
C_{\pi \pi}\left(t-t^{\prime}\right)=\left\langle\mathcal{O}_{\gamma_{5}}^{I=0}\left(t^{\prime}\right)\left(\mathcal{O}_{\gamma_{5}}^{I=0}\right)^{\dagger}(t)\right\rangle \\
\quad=D(t)+\frac{1}{2} X(t)-3 B(t)+\frac{3}{2} V(t)
\end{gathered}
$$

- in the elastic region sufficient to determine δE from $C_{\pi \pi}$!
- $a_{0}^{I=0}$ in principle from same analysis as for $I=2$

$I=0$ in Twisted Mass Lattice QCD

- Twisted Mass Lattice QCD explicitly breaks isospin symmetry at finite lattice spacing values
\Rightarrow cannot project to states with $I=0$
see also [Buchoff et al., (2009)]
- way out $\quad \Rightarrow \quad$ valence action with explicit isospin symmetry
- con: have to deal with lattice artefacts from unitarity violations here: mixing with lower lying states (due to vacuum diagram)
- use different discretisation with reduced isospin splitting
- apply generalized eigenvalue problem (GEVP) to identify state of interest [Michael and Teasdale (1983); Lüscher and Wolff (1990)]

$\pi-\pi$ Scattering with $I=0$

- much more difficult due to disconnected contributions
- $I=0$ channel with the σ resonance
- weakly attractive interaction
- only one lattice spacing value

- we obtain (see arXiv:1701.08961)

$$
M_{\pi} a_{0}^{\mathrm{I}=0}=0.198(9)_{\mathrm{stat}}(6)_{\mathrm{sys}}
$$

- compare to NA48-2 result $M_{\pi} a_{0}^{\mathrm{I}=0}=0.220(3)(2)$
[NA48-2, (2010)]

Generation of Gauge Configurations

Lessons learned from $I=0$ investigation:

- in principle possible with twisted mass
- but very hard to control systematic uncertainties
- and very hard to compute the phase shift

We decided to generate new gauge configurations, requiring

- physical point possible at $a \approx 0.1 \mathrm{fm}$
- parameters known from the literature
- simulation software available and tested
- no isospin breaking
- not too expensive to simulate

Generation of Gauge Configurations

\Rightarrow Wilson-clover with $6 \times$ stout smearing with $N_{f}=2+1$
[BMW (2013)]

- can be simulated using chroma
- simulation parameters available in the literature [BMW, (2013)]
- we have slightly re-tuned the strange quark mass
- use extra-long time extend to avoid unwanted pollution
- currently running $M_{\pi} \approx 270 \mathrm{MeV}$ with $L / a=24$ and $L / a=32$ with $T / a=96$

First Results on new Ensemble

- first $I=0$ result on new ensemble
- limited statistics
- single volume
- compared to twisted-clover result

\Rightarrow on a good track
- optimistic to deliver the milestones with this action!

The η^{\prime} in $N_{f}=2$ QCD at the physical point

- $U(1)$ axial anomaly thought to be responsible for large η^{\prime} mass

$$
\partial^{\mu} J_{\mu 5}^{q}=2 m_{q}\left(\bar{q} i \gamma_{5} q\right)+\frac{\alpha_{s}}{4 \pi} F \tilde{F}
$$

- tightly connected to topology
- results at physical pion mass missing so far
- how do errors scale towards the physical point?
- $N_{f}=2$ technically easier: no mixing of $\eta-\eta^{\prime}$
- Glueball spectrum? Mixing of η^{\prime} with Glueballs?
\Rightarrow see the talk of Wei Sun

The η^{\prime} in $N_{f}=2$ QCD at the physical point

- with $r_{0}=0.4907(5)$ fm we arrive at

$$
M_{\eta_{2}}^{N_{f}=2}=768(24) \mathrm{MeV}
$$

[B. Kostrzewa+, in preparation]

The Pion electromagnetic form factor at the physical point

- Electromagnetic pion form factor

$$
\begin{aligned}
& F_{\pi}\left(\left(p-p^{\prime}\right)^{2}\right)\left(p+p^{\prime}\right)_{\mu}= \\
& \quad\left\langle\pi^{+}\left(p^{\prime}\right)\right| V_{\mu}(0)\left|\pi^{+}(p)\right\rangle
\end{aligned}
$$

- two volumes at physical point
- additional ensembles at
$M_{\pi}=250 \mathrm{MeV}$ and
$M_{\pi}=340 \mathrm{MeV}$
- two volumes each

\Rightarrow result for the charge radius (ChPT in m_{ℓ} and for FS)

$$
r_{\pi}^{2}=0.443(29) \mathrm{fm}^{2}
$$

[B. Kostrzewa+, in preparation]
compare $\left(r_{\pi}^{\exp }\right)^{2}=0.452(11) \mathrm{fm}^{2}$
[PDG]

Scattering of two Vector Particles

- motivation: Higgs a bound state of W bosons?
- derived formalism for scattering of vector particles in finite volume
[see also: Briceno, (2014)]
- test in toy model: scalar QED
- allows variation of interaction strength

Scattering of two Vector Particles

- motivation: Higgs a bound state of W bosons?
- derived formalism for scattering of vector particles in finite volume [see also: Briceno, (2014)]
- test in toy model: scalar QED
- allows variation of interaction strength

\Rightarrow energy shift can be determined

QPhiX: Towards New Architectures

- new architecture pose significant challenges
\Rightarrow MPI
\Rightarrow threading (OpenMP)
\Rightarrow SIMD vector unit
- QPhiX: flexible C++ suite for Intel chips
[https://github.com/JeffersonLab/qphix]

\Rightarrow significant speedup compared to standard kernel
\Rightarrow speedup of 1.6 in our gauge configuration generation

Milestones

- 2016:
- Spectrum of 1^{++}charmonium states on ensemble A40.24
- Calculation of pion form factors as test of generalised perambulators
- 2017:
- Spectrum of 1^{++}charmonium states and $X(3872)$
- Exploratory study on the radiative transitions between charmonium and $X(3872)$ using distillation
- The study of J / ψ radiatively decaying into the $s \bar{s}$ tensor meson
- ρ meson properties on $N_{f}=2$ physical point ensemble
- a_{0}, \ldots change of strategy, instead:
\Rightarrow Generate new gauge configurations first to avoid isospin breaking

