A2: Hadronic Dynamics on the Lattice

Chuan Liu, Marcus Petschlies, Carsten Urbach

HISKP, University of Bonn
Bethe Center for Theoretical Physics, European Twisted Mass Collaboration

CRC110 General Assembly, 8/2017

Personnel

- Principal Investigators:

Chuan Liu
Carsten Urbach

- Students:

Ting Chen
Christopher Helmes
Christian Jost (until July/2017)
Fernando Romero López
Max Oehm
Chao Xiong
Ke-Long Zhang

- Post-Docs: Marcus Petschlies Liuming Liu
Bartosz Kostrzewa

Pion-Pion Scattering $(I=2)$ at the Physical Point

- $N_{f}=2$, one lattice spacing
- two volumes @ $M_{\pi}=135 \mathrm{MeV}$: $L \approx 4 \mathrm{fm}$ and $L \approx 6 \mathrm{fm}$
- additional ensembles at larger pion masses

- no extrapolation in M_{π} needed!
- have to balance statistical versus extrapolation error
- $N_{f}=2+1+1$ at physical point currently in production

$K^{+} K^{+}$Scattering with $I=1$: Motivation

- at STAR or ALICE experiments: numerous light hadrons created
- kaons carry on average much lower momentum than pions
- kaons much more likely to interact elastically
- lattice computation of KK scattering valuable input
- theoretically interesting: does chiral perturbation theory still work for KK?

$K^{+} K^{+}$Scattering with $I=1$: Strange Quark Mass

- value of sea strange quark mass up to 10% off
- corrected for by varying the valence strange quark mass
\Rightarrow small unknown systematic uncertainty
- interpolate linearly in $M_{K}^{2}-0.5 M_{\pi}^{2}$
- input: M_{K}, M_{π} and lattice spacing

$K^{+} K^{+}$Scattering with $I=1$: Extrapolations

at fixed strange quark mass:

- extrapolate in light quark mass
- and lattice spacing a^{2}
- combined fit of all data simultaneously
- first continuum extrapolation of this quantity

- result

$$
M_{K} a_{0}=-0.385(16)_{\text {stat }}\left({ }_{-12}^{+0}\right)_{m_{s}}\left({ }_{-5}^{+0}\right)_{Z_{P}}(4)_{r_{f}}
$$

$K^{+} K^{+}$Scattering with $I=1$: Comparison

Pion-Kaon Scattering (preliminary)

- similar to pion-pion or kaon-kaon, but two particles with different mass
\Rightarrow time dependent pollution
- same strategy as for kaon-kaon
\Rightarrow mixed action for the strange quark
- three lattice spacings
- $I=3 / 2$ channel first
$\Rightarrow I=1 / 2$ channel via crossing symmetry and ChPT
- $I=1 / 2$ direct calculation in progress

Pion-Kaon Scattering (preliminary)

- fit with NLO ChPT $+\mathcal{O}\left(a^{2}\right)$
- three lattice spacings
- compare to results of NPLQCD [NPLQCD, (2006)]
- preliminary result:

$$
\left(\mu_{\pi K} a_{3 / 2}\right)_{\text {phys }}=-0.0477(9)
$$

\Rightarrow almost ready to be published

Pion-Kaon Scattering (preliminary)

- in NLO ChPT

$$
\Gamma=L_{5}-\frac{2 M_{K}}{M_{\pi}} L_{\pi K}
$$

- result (preliminary)

$$
\begin{aligned}
\left(\mu_{\pi K} a_{3 / 2}\right)_{\text {phys }} & =-0.0469(6) \\
\left(M_{\pi} a_{3 / 2}\right)_{\text {phys }} & =-0.0598(8) \\
\left(M_{\pi} a_{1 / 2}\right)_{\text {phys }} & =+0.163(1)
\end{aligned}
$$

\Rightarrow almost ready to be published

Two and Three Particle Quantization Condition

- investigate formulae for "three particle quantization condition in a finite volume"
[Hammer, Pang, Rusetsky, (2017)]
- first study in a toy model
\Rightarrow complex ϕ^{4} theory
- determine two and three particle energy levels
- in collaboration with project B4
- $k \cot (\delta)$ for the two particle system:

Pion-Nucleon Scattering

- ultimate goal: study of transition amplitude

$$
N \gamma^{*} \rightarrow \Delta \rightarrow N \pi
$$

- energy dependent phase shift as required input for matrix elements of unstable Δ state $\langle\pi N| J_{\mu}|N\rangle$
- modified strategy
- ETMC $N_{=} 2$ @ physical pion mass (Δ as proper resonance, 2 lattice volumes)
- non - stochastic distillation approach [Alexandrou etal. 2017] from $\pi \gamma \rightarrow \pi \pi$

Pion-Nucleon Scattering

- work package implemented for $\pi-N$, any $I=1 / 2,3 / 2 ; I_{3}$
- data acquisition started for $N_{f}=2$ physical point $L / a=48$ and $L / a=64$
- implementation of phase shift analysis on-going

Pion-Nucleon Scattering

- daunting question about signal/noise, statistics for 3×3 or 4×4 GEVP
- computer time granted for 2017: $60+35$ million core hours (Hazelhen @ HRLS and JuQueen @ FZJ)
- ETMC $N_{f}=2+1+1$ physical point ensemble on the horizon for analysis

Simulations with $N_{f}=2+1+1$ at the Physical Point

- physical point with Wilson like fermions and $a \approx 0.1 \mathrm{fm}$ difficult
- twisted-clover:
physical point at $a \approx 0.09 \mathrm{fm}$ possible
- $L=64$ production almost finished
- additional ensembles at non-physical M_{π} available

\Rightarrow measurements currently in progress
- here: nucleon mass compared to previous simulations

Milestones

- 2016:
- $N_{f}=2+1+1$ ensemble with $L / a=48$ at physical point with $a \approx 0.1 \mathrm{fm}$, changed to $L / a=64$ at $a \approx 0.09 \mathrm{fm}, \checkmark$, finishing
- $\pi \pi$ scattering with $I=2$ at $N_{f}=2$ physical point
- identify the most relevant channels in charmed meson scattering
- 2017:
- analysis of basic quantities on $N_{f}=2+1+1$ physical point \checkmark, ongoing
- $\pi \pi$ scattering with $I=0$ on $N_{f}=2$ physical point \checkmark
- Pion-Nucleon: change of strategy, \checkmark, ongoing
- charmed meson scattering, extract scattering parameters for one ensemble
\Rightarrow see talk of Ting Chen

