A2: Hadronic Dynamics on the Lattice

Chuan Liu, Marcus Petschlies, Carsten Urbach

HISKP, University of Bonn Bethe Center for Theoretical Physics, European Twisted Mass Collaboration

CRC110 General Assembly, 8/2017

Personnel

 Principal Investigators: Chuan Liu
 Carsten Urbach

• Students:

Ting Chen
Christopher Helmes
Christian Jost (until July/2017)
Fernando Romero López
Max Oehm
Chao Xiong
Ke-Long Zhang

Post-Docs:
 Marcus Petschlies
 Liuming Liu
 Bartosz Kostrzewa

Pion-Pion Scattering (I=2) at the Physical Point

- $N_f = 2$, one lattice spacing
- two volumes @ $M_\pi=135~{
 m MeV}$: $L\approx 4~{
 m fm}$ and $L\approx 6~{
 m fm}$
- additional ensembles at larger pion masses

- no extrapolation in M_{π} needed!
- · have to balance statistical versus extrapolation error
- $N_f = 2 + 1 + 1$ at physical point currently in production

K^+K^+ Scattering with I=1: Motivation

- at STAR or ALICE experiments: numerous light hadrons created
- kaons carry on average much lower momentum than pions
- · kaons much more likely to interact elastically
- lattice computation of KK scattering valuable input
- theoretically interesting: does chiral perturbation theory still work for KK?

K^+K^+ Scattering with I=1: Strange Quark Mass

- value of sea strange quark mass up to 10% off
- corrected for by varying the valence strange quark mass
- ⇒ small unknown systematic uncertainty
 - interpolate linearly in $M_K^2 0.5 M_\pi^2$
 - input: M_K , M_π and lattice spacing
 - now work at fixed strange quark mass value

K^+K^+ Scattering with I=1: Extrapolations

at fixed strange quark mass:

- · extrapolate in light quark mass
- and lattice spacing a²
- combined fit of all data simultaneously
- first continuum extrapolation of this quantity

result

$$M_K a_0 = -0.385(16)_{\text{stat}} \binom{+0}{-12}_{m_s} \binom{+0}{-5}_{Z_P} (4)_{r_f}$$

K^+K^+ Scattering with I=1: Comparison

[NPLQCD (2008), PACS-CS (2014), ETMC (PRD, 2017)]

Pion-Kaon Scattering (preliminary)

- similar to pion-pion or kaon-kaon, but two particles with different mass
- ⇒ time dependent pollution
 - same strategy as for kaon-kaon
- ⇒ mixed action for the strange quark
 - three lattice spacings
 - I = 3/2 channel first
- $\Rightarrow I = 1/2$ channel via crossing symmetry and ChPT
 - I = 1/2 direct calculation in progress

Pion-Kaon Scattering (preliminary)

- fit with NLO ChPT $+ \mathcal{O}(a^2)$
- · three lattice spacings
- compare to results of NPLQCD [NPLQCD, (2006)]
- · preliminary result:

$$(\mu_{\pi K} a_{3/2})_{\rm phys} = -0.0477(9)$$

⇒ almost ready to be published

Pion-Kaon Scattering (preliminary)

in NLO ChPT

$$\Gamma = L_5 - \frac{2M_K}{M_\pi} L_{\pi K}$$

result (preliminary)

$$(\mu_{\pi K} a_{3/2})_{\text{phys}} = -0.0469(6)$$

$$(M_{\pi} a_{3/2})_{\text{phys}} = -0.0598(8)$$

$$(M_{\pi} a_{1/2})_{\text{phys}} = +0.163(1)$$

⇒ almost ready to be published

Two and Three Particle Quantization Condition

 investigate formulae for "three particle quantization condition in a finite volume"

[Hammer, Pang, Rusetsky, (2017)]

- first study in a toy model
- \Rightarrow complex ϕ^4 theory
 - determine two and three particle energy levels
 - in collaboration with project B4

• $k \cot(\delta)$ for the two particle system:

Pion-Nucleon Scattering

 ultimate goal: study of transition amplitude

$$N \gamma^* \to \Delta \to N \pi$$

- energy dependent phase shift as required input for matrix elements of unstable Δ state $\langle \pi N \, | \, J_{\mu} \, | \, N \rangle$
- modified strategy
 - ETMC N=2 @ physical pion mass (Δ as proper resonance, 2 lattice volumes)
 - non stochastic distillation approach [Alexandrou et al. 2017] from $\pi\,\gamma o \pi\,\pi$

Pion-Nucleon Scattering

- work package implemented for πN , any $I = 1/2, 3/2; I_3$
- data acquisition started for $N_f=2$ physical point L/a=48 and L/a=64
- · implementation of phase shift analysis on-going

Pion-Nucleon Scattering

- daunting question about signal/noise, statistics for 3×3 or 4×4 GEVP
- computer time granted for 2017:
 60 + 35 million core hours
 (Hazelhen @ HRLS and JuQueen
 @ FZJ)
- ETMC $N_f = 2 + 1 + 1$ physical point ensemble on the horizon for analysis

Simulations with $N_f = 2 + 1 + 1$ at the Physical Point

- physical point with Wilson like fermions and $a \approx 0.1$ fm difficult
- twisted-clover: physical point at $a \approx 0.09 \mathrm{fm}$ possible
- L=64 production almost finished
- additional ensembles at non-physical M_{π} available

- ⇒ measurements currently in progress
 - here: nucleon mass compared to previous simulations

Milestones

2016:

- $N_f=2+1+1$ ensemble with L/a=48 at physical point with $a\approx 0.1$ fm, changed to L/a=64 at $a\approx 0.09$ fm, \checkmark , finishing
- $\pi\pi$ scattering with I=2 at $N_f=2$ physical point \checkmark
- identify the most relevant channels in charmed meson scattering √

2017:

- analysis of basic quantities on $N_f = 2 + 1 + 1$ physical point \checkmark , ongoing
- $\pi\pi$ scattering with I=0 on $N_f=2$ physical point \checkmark
- Pion-Nucleon: change of strategy, √, ongoing
- charmed meson scattering, extract scattering parameters for one ensemble
- ⇒ see talk of Ting Chen