Decay behaviors of the P_c hadronic molecules

Chao-Wei Shen

Institute of Theoretical Physics, Chinese Academy of Sciences B11

CRC110 general meeting of 2017 Peking University

Aug 31, 2017

- Disentangling the hadronic molecule nature of the pentaquark-like structure
 - LHCb's observation of pentaquark states
 - Predictions prior to LHCb observation
 - Explanations after LHCb observation
 - Decay behaviors of the P_c hadronic molecules
 - The decay width of the P_c to all possible final states
 - Production of P_c states in photo- and pion- induced reactions
- 3 $\bar{D}\Lambda_c \bar{D}\Sigma_c$ interactions in Jülich-Bonn model
 - 4 Summary and prospects

LHCb's observation of pentaquark states

R. Aaij *et al.* [LHCb Collaboration], Phys. Rev. Lett. **115** (2015) 072001 Observation of $J/\psi p$ resonances consistent with pentaquark states in $\Lambda_b^0 \rightarrow J/\psi K p$ Decays

Chao-Wei Shen (ITP,CAS,B11)

Decay behaviors of Pc hadronic molecules

Figure: $m_{J/\psi p}$ in m_{Kp} intervals for the fit with two P_c^+ states: (d) $m_{Kp} > 2$. GeV

Listed in C. Patrignani *et al.* [Particle Data Group], Chin. Phys. C **40** no.10, 100001 (2016) and 2017 update.

- M=4380 \pm 8 \pm 29 MeV,
 - $\Gamma=205\pm18\pm86~\text{MeV}$
- M=4450 \pm 2 \pm 3 MeV,
 - $\Gamma=39\pm5\pm19~\text{MeV}$
- Significances $> 9\sigma$ for both
- The two states have opposite parity.
- The preferred spin is one having spin-3/2 and the other 5/2.

Theoretical groups

ITP, IHEP, IMP, Peking U., UCAS, Valencia U., Georgia U., Bonn U., etc.

J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett. **105** (2010) 232001, Phys. Rev. C **84** (2011) 015202.

Figure: The Feynman diagrams of pseudoscalar-baryon (a) or vector- baryon (b) interaction via the exchange of a vector meson. P_1 , P_2 is D^- , \overline{D}^0 or D_s^- , and V_1 , V_2 is D^{*-} , \overline{D}^{*0} or D_s^{*-} , and B_1 , B_2 is Σ_c , Λ_c^+ , Ξ_c , Ξ_c' or Ω_c , and V^* is ρ , K^* , ϕ or ω .

Dynamically generated $\bar{D}^{(*)}\Sigma_c$, $\bar{D}^{(*)}_s\Sigma_c$ and $\bar{D}^{(*)}\Xi^{(\prime)}_c$ bound states.

	(<i>I</i> , <i>S</i>)	z_R (MeV)		g _a	
	(1/2, 0)		$\bar{D}\Sigma_c$	$ar{D}\Lambda_c^+$	
$N_{c\bar{c}}^*$		4269	2.85	0	
	(0, -1)		$ar{D}_s \Lambda_c^+$	$\bar{D}\Xi_c$	$\bar{D}\Xi_c'$
$\Lambda^*_{c\bar{c}}$		4213	1.37	3.25	0
		4403	0	0	2.64

Table: Pole positions z_R and coupling constants g_a for the states from $PB \rightarrow PB$.

	(I,S)	z_R (MeV)		ga	
	(1/2,0)		$\bar{D}^*\Sigma_c$	$ar{D}^* \Lambda_c^+$	
N _{cc}		4418	2.75	0	
	(0, -1)		$ar{D}^*_s \Lambda^+_c$	$\bar{D}^* \Xi_c$	$\bar{D}^* \Xi_c'$
$\Lambda^*_{c\bar{c}}$		4370	1.23	3.14	0
		4550	0	0	2.53

Table: z_R and g_a for the states from $VB \rightarrow VB$.

Chao-Wei Shen (ITP,CAS,B11)

	(<i>I</i> , <i>S</i>)	М	Г			Г	i		
	(1/2, 0)			πN	ηN	$\eta' N$	KΣ		$\eta_c N$
$N_{c\bar{c}}^*$		4261	56.9	3.8	8.1	3.9	17.0		23.4
	(0, -1)			ĒΝ	$\pi\Sigma$	$\eta \Lambda$	$\eta' \Lambda$	KΞ	$\eta_c \Lambda$
$\Lambda^*_{c\bar{c}}$		4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8
		4394	43.3	0	10.6	7.1	3.3	5.8	16.3

Table: Mass (*M*), total width (Γ), and the partial decay width (Γ_i) for the states from $PB \rightarrow PB$, with units in MeV.

ψN
9.2
$/\psi$
5.4
3.8

Table: *M*, Γ and Γ_i for the states from $VB \rightarrow VB$.

Explanations after LHCb observation

Theoretical interpretations of the hidden-charm pentaquark states (H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept. **639** (2016) 1)

- **()** The molecular scheme: bound molecular states of $\bar{D}^{(*)}\Sigma_c^{(*)}$
 - R. Chen, X. Liu, X. Q. Li and S. L. Zhu, Phys. Rev. Lett. $\boldsymbol{115}$ (2015) 132002
 - L. Roca, J. Nieves and E. Oset, Phys. Rev. D 92 (2015) no.9, 094003
 - J. He, Phys. Lett. B 753 (2016) 547
 - Q. F. Lü and Y. B. Dong, Phys. Rev. D 93 (2016) no.7, 074020
- Diquark-diquark-antiqurk state with c
 [cu][ud] configuration
 L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B 749 (2015) 289
 V. V. Anisovich *et al.*, arXiv:1507.07652 [hep-ph]
- Diquark-triquark state with [cu][udc̄] configuration
 R. F. Lebed, Phys. Lett. B 749 (2015) 454
 - R. Zhu and C. F. Qiao, Phys. Lett. B 756 (2016) 259
- 6 Kinematic effects

F. K. Guo, U. G. Meißner, W. Wang and Z. Yang, Phys. Rev. D 92 (2015) 071502
 X. H. Liu, Q. Wang and Q. Zhao, Phys. Lett. B 757 (2016) 231

C. W. Shen, F. K. Guo, J. J. Xie and B. S. Zou, Nucl. Phys. A 954 (2016) 393

the effective Lagrangians for the first

$$\begin{aligned} \mathcal{L}_{P_{c}(\frac{3}{2}^{-})\Sigma_{c}\bar{D}^{*}} &= g_{P_{c}\Sigma_{c}\bar{D}^{*}}\bar{\Sigma}_{c}P_{c\mu}\bar{D}^{*\mu}, \\ \mathcal{L}_{P_{c}(\frac{3}{2}^{-})\Sigma_{c}^{*}\bar{D}} &= g_{P_{c}\Sigma_{c}^{*}\bar{D}}\bar{\Sigma}_{c}^{*\mu}P_{c\mu}\bar{D}, \end{aligned}$$

A Gaussian regulator is added in the first vertex:

$$\Phi_{P_c}(q_E^2/\Lambda^2) \equiv \exp(-q_E^2/\Lambda^2),$$

where q_E is the Euclidean Jacobi momentum. The effective Lagrangian involved:

$$\begin{split} \mathcal{L}_{PPV} &= g_{PPV}\phi_{P}(x)\partial_{\mu}\phi_{P}(x)\phi_{V}^{\mu}(x), \\ \mathcal{L}_{VVP} &= g_{VVP}i\varepsilon_{\mu\nu\alpha\beta}\partial^{\mu}\phi_{V}^{\nu}(x)\partial^{\alpha}\phi_{V}^{\beta}(x)\phi_{P}(x), \\ \mathcal{L}_{VVV} &= g_{VVV}i\left[\partial_{\mu}\phi_{V\nu}(x) - \partial_{\nu}\phi_{V\mu}(x)\right]\phi_{V}^{\mu}(x)\phi_{V}^{\nu}(x), \\ \mathcal{L}_{BPB^{*}} &= g_{BPB^{*}}\left[\bar{\psi}_{B^{*}\mu}(x)\psi_{B}(x) + \bar{\psi}_{B}(x)\psi_{B^{*}\mu}(x)\right]\partial^{\mu}\phi_{P}(x), \\ \mathcal{L}_{BVB^{*}} &= g_{BVB^{*}}i\left[\bar{\psi}_{B^{*}\nu}(x)\gamma^{5}\gamma_{\mu}\psi_{B}(x) - \bar{\psi}_{B}(x)\gamma^{5}\gamma_{\mu}\psi_{B^{*}\nu}(x)\right] \\ & \left[\partial^{\mu}\phi_{V}^{\nu}(x) - \partial^{\nu}\phi_{V}^{\mu}(x)\right], \\ \mathcal{L}_{BBP} &= g_{BBP}\bar{\psi}_{B}(x)i\gamma^{5}\psi_{B}(x)\phi_{P}(x), \\ \mathcal{L}_{BBV} &= g_{BBV}\left[\bar{\psi}_{B}(x)\gamma_{\mu}\psi_{B}(x)\phi_{V}^{\mu}(x) + 2f_{BBV}\bar{\psi}_{B}(x)\sigma_{\mu\nu}\psi_{B}(x)\left(\partial^{\mu}\phi_{V}^{\nu}(x) - \partial^{\nu}\phi_{V}^{\mu}(x)\right)\right], \end{split}$$

The partial decay width is proportional to $g_{P_c \Sigma_c \overline{D}}^2$ and $g_{P_c \Sigma_c \overline{D}^*}^2$. However, the ratio R has no relates with the partial the first vertexes' coupling constants.

$$R_{\rm I} = \frac{\Gamma(P_c(4380) \to \bar{D}\Sigma_c^* \to \bar{D}^*\Lambda_c)}{\Gamma(P_c(4380) \to \bar{D}\Sigma_c^* \to J/\psi p)} \sim 10$$
$$R_{\rm II} = \frac{\Gamma(P_c(4380) \to \bar{D}^*\Sigma_c \to \bar{D}^*\Lambda_c)}{\Gamma(P_c(4380) \to \bar{D}^*\Sigma_c \to J/\psi p)} \sim 1$$

The dependence of both ratios on the cutoff is rather weak.

This ratio can be employed to tell the nature of the P_c resonances in the future experiments, such as experiments at LHCb, the γp experiments at JLab, or the πp experiments at JPARC.

We also analyzed in details using the nonrelativistic formalism taking heavy quark spin symmetry into account.

Nonrelativistic formalism

$$\begin{split} \mathcal{L}_{HH\pi} &= -\frac{g}{2} \left\langle H_a^{\dagger} H_b \vec{\sigma} \cdot \vec{u}_{ba} \right\rangle + \frac{g}{2} \left\langle \bar{H}_a^{\dagger} \vec{\sigma} \cdot \vec{u}_{ab} \bar{H}_b \right\rangle, \\ \mathcal{L}_{SB_{\bar{3}}\pi} &= -\frac{\sqrt{3}}{2} g_2 B_{\bar{3},ab}^{\dagger} \vec{u}_{bc} \cdot \vec{S}_{ca} + \text{h.c.}, \\ \mathcal{L}_{P_c} &= -\sqrt{\frac{2}{3}} \left(g_{P_c} \bar{D}_a^{\dagger} \vec{\Sigma}_{c,ab}^{*\dagger} \cdot \vec{P}_{c,b} + g_{P_c}' \bar{D}_a^{*i\dagger} \Sigma_{c,ab}^{\dagger} P_{c,b}^{i} \right). \end{split}$$

where $\bar{H}_a = -\vec{D}_a^* \cdot \vec{\sigma} + \bar{D}_a$, $\vec{u}_{ab} = -\sqrt{2}\vec{\partial}\phi_{ab}/F + O(\phi^3)$, $S_{ab}^i = B_{6,ab}^{*i} + \frac{1}{\sqrt{3}}\sigma^i B_{6,ab}$ and

$$B_{\bar{3}} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix}, B_6 = \begin{pmatrix} \Sigma_c^{++} & \frac{1}{\sqrt{2}}\Sigma_c^+ & \frac{1}{\sqrt{2}}\Xi_c^{\prime+} \\ \frac{1}{\sqrt{2}}\Sigma_c^+ & \Sigma_c^0 & \frac{1}{\sqrt{2}}\Xi_c^{\prime0} \\ \frac{1}{\sqrt{2}}\Xi_c^{\prime+} & \frac{1}{\sqrt{2}}\Xi_c^{\prime0} & \Omega_c^0 \end{pmatrix}$$

Chao-Wei Shen (ITP,CAS,B11)

.

$$\begin{split} I^{ij} &\equiv \frac{i}{4m_1m_2} \int \frac{d^4l}{(2\pi)^4} \frac{l^i l^j}{(q^0 - l^0 - \omega_1 + i\epsilon) (k^0 + l^0 - \omega_2 + i\epsilon) (l^2 - m_3^2 + i\epsilon)}, \\ I_S(m_1, m_2, m_3, \vec{q}^2) &= I^{ii}(m_1, m_2, m_3, \vec{q}), \\ I_D(m_1, m_2, m_3, \vec{q}^2) &= \frac{3}{2} l^{ij}(m_1, m_2, m_3, \vec{q}) (\frac{q_i q_j}{\vec{q}^2} - \frac{1}{3} \delta^{ij}). \\ \sum_{\omega, \alpha, \lambda} \left| \mathcal{A}_{D\Sigma_c}^{\text{OPE}} \right|^2 &= 144N^2 g_{P_c}^2 m_{\Lambda_c} m_{P_c} m_{\Sigma_c}^2 \times \\ \left[2 \left| I_D(m_D, m_{\Sigma_c^*}, m_{\pi}, \vec{q}^2) \right|^2 + \left| I_S(m_D, m_{\Sigma_c^*}, m_{\pi}, \vec{q}^2) \right|^2 \right], \\ \sum_{\omega, \alpha, \lambda} \left| \mathcal{A}_{D^*\Sigma_c}^{\text{OPE}} \right|^2 &= 48N^2 g_{P_c}^{\prime 2} m_{\Lambda_c} m_{P_c} m_{\Sigma_c}^2 \times \\ \left[5 \left| I_D(m_D, m_{\Sigma_c^*}, m_{\pi}, \vec{q}^2) \right|^2 + \left| I_S(m_D, m_{\Sigma_c^*}, m_{\pi}, \vec{q}^2) \right|^2 \right]. \end{split}$$

Then we evaluated the value of the coupling $g_{P_c \sum_{c}^{*} \overline{D}}$ and $g_{P_c \sum_{c} \overline{D}^{*}}$ using:

$$g^2 = rac{4\pi}{4Mm_2} rac{(m_1+m_2)^{5/2}}{(m_1m_2)^{1/2}} \sqrt{32\epsilon},$$

where M, m_1 and m_2 are the masses of P_c , $\overline{D}(\overline{D}^*)$ and $\Sigma_c^*(\Sigma_c)$, respectively, and ϵ is the binding energy, which is valid for an *S*-wave shallow bound state.

Figure: The three-body decay for $P_c(4380)$ being a $\overline{D}\Sigma_c^*$ hadronic molecule.

The three-body decay $P_c \rightarrow \bar{D}\pi\Lambda_c$ leads to a width of only about 10 MeV, much smaller than the reported width of the $P_c(4380)$.

- Disentangling the hadronic molecule nature of the pentaquark-like structure
 - LHCb's observation of pentaquark states
 - Predictions prior to LHCb observation
 - Explanations after LHCb observation
 - Decay behaviors of the P_c hadronic molecules
 - The decay width of the P_c to all possible final states
 - Production of P_c states in photo- and pion- induced reactions
- 3 $\bar{D}\Lambda_c \bar{D}\Sigma_c$ interactions in Jülich-Bonn model
 - 4 Summary and prospects

Y. H. Lin, C. W. Shen, F. K. Guo and B. S. Zou, Phys. Rev. D **95** (2017) no.11, 114017

All possible final states for the decay of $P_c(4380)$ with $J^P = \frac{3}{2}^-$ and $P_c(4450)$ with $J^P = \frac{3}{2}^-$ or $\frac{5}{2}^+$.

Initial state	Final states
$P_{c}(4380)(\bar{D}\Sigma_{c}^{*})$	$ar{D}^* \Lambda_c$, J/ ψ p, $ar{D} \Lambda_c$, π N, χ_{c0} p, η_c p, $ ho$ N, ω p, $ar{D} \Sigma_c$
$P_c(4380)(\bar{D}^*\Sigma_c)$	$ar{D}^* \Lambda_c$, J/ ψ p, $ar{D} \Lambda_c$, π N, χ_{c0} p, η_c p, $ ho$ N, ω p, $ar{D} \Sigma_c$
$P_c(4450)(\bar{D}^*\Sigma_c)$	$\bar{D}^*\Lambda_c$, $J/\psi p$, $\bar{D}\Lambda_c$, πN , $\chi_{c0}p$, $\eta_c p$, ρN , ωp , $\bar{D}\Sigma_c$, $\bar{D}\Sigma_c^*$

More diagrams and Lagrangians are needed and used here.

The value of Λ_0 is varied from 0.5 ${\rm GeV}$ to 1.2 ${\rm GeV}$ for an estimate of the two-body partial widths, since it denotes a hard momentum scale which suppresses the contribution of the two constituents at short distances $\sim 1/\Lambda_0.$

In addition, an off-shell form factor for the exchanged meson with mass m, momentum q needs to be introduced, and we take the form

$$F(q^2) = rac{\Lambda_1^4}{(m^2 - q^2)^2 + \Lambda_1^4},$$

The parameter Λ_1 for the off-shell form factor varies for different system, and we will vary it in the range of 1.5 \sim 2.4 ${\rm GeV}$

Figure: Dependence of the $P_c(4380)$ total width and branching fractions of $\overline{D}^*\Lambda_c$, $\overline{D}\Lambda_c$ and $J/\psi p$ on the cutoff Λ_0 and Λ_1 in different scenarios for the $P_c(4380)$: (left) S-wave $\overline{D}\Sigma_c^*$ molecule with $J^P = \frac{3}{2}^-$; (right) S-wave $\overline{D}^*\Sigma_c$ molecule with $J^P = \frac{3}{2}^-$. Upper Λ_1 is fixed at 2.0 GeV, and bottom Λ_0 is fixed at 1.0 GeV.

To estimate the partial widths of the $J^P = \frac{5^+}{2} P_c(4450)$ state, we use the effective Lagrangian for the *P*-wave interaction among $P_c(4450)$, \bar{D}^* and Σ_c :

$$\mathcal{L}_{\bar{D}^*\Sigma_c P_c} = g_{\bar{D}^*\Sigma_c P_c} \left(-g^{\nu\alpha} + \frac{p^{\nu}p^{\alpha}}{p^2} \right) \left(\partial_{\alpha}\bar{\Sigma}_c \bar{D}^{*\mu} - \bar{\Sigma}_c \partial_{\alpha}\bar{D}^{*\mu} \right) P_{c\mu\nu} + H.c.,$$

with p the momentum of the P_c state. The coupling constant $g_{\bar{D}^*\Sigma_c P_c}$ may be obtained from the compositeness condition.

However, being in a *P*-wave, the obtained coupling strength relies much more on the cutoff Λ_0 . Thus, we can only make a rough estimate for the widths in this case.

Figure: Dependence of the $P_c(4450)$ total width and branching fractions of $\overline{D}^*\Lambda_c$, $\overline{D}\Lambda_c$ and $J/\psi p$ on the cutoff Λ_0 and Λ_1 in different scenarios for the $P_c(4380)$: (left) *S*-wave $\overline{D}^*\Sigma_c$ molecule with $J^P = \frac{3}{2}^-$; (right) *P*-wave $\overline{D}^*\Sigma_c$ molecule with $J^P = \frac{5}{2}^+$. Upper Λ_1 is fixed at 2.0 GeV and bottom Λ_0 is fixed at 1.0 GeV. Chao-Wei Shen (ITP,CAS,B11) Decay behaviors of P_c hadronic molecules Aug 31, 2017 20/30 The corresponding numerical results are obtained with $\Lambda_0=1.0~{\rm GeV}$ and $\Lambda_1=2.0~{\rm GeV}.$

	Widths (MeV)					
Mode	$P_c(4$	4380)	$P_{c}(4450)$			
	$\bar{D}\Sigma_c^*(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{3}{2}^-)$	$\bar{D}^*\Sigma_c(\frac{5}{2}^+)$		
$\bar{D}^*\Lambda_c$	110.4	28.6	63.8	16.3		
$J/\psi p$	2.7	19.8	17.7	2.6		
$\bar{D}\Lambda_c$	1.2	13.7	36.0	14.9		
πN	0.08	0.06	0.06	0.03		
$\chi_{c0} p$	0.8	0.002	0.01	0.001		
$\eta_c p$	0.2	0.05	0.1	0.02		
ho N	1.6	0.4	0.2	0.1		
ωp	6.1	1.3	0.8	0.4		
$\bar{D}\Sigma_c$	0.01	0.09	1.1	0.2		
$\bar{D}\Sigma_{c}^{*}$	-	-	8.9	0.5		
$\bar{D}\Lambda_c\pi$	7.5	-	-	-		
Total	130.6	64.0	128.7	35.0		

<□ > < □ >

Aug 31, 2017 2

21 / 30

Chao-Wei Shen (ITP,CAS,B11)

Production of P_c states in photo- and pion- induced reactions

Figure: The s and u-channel contributions of the P_c states for the scattering processes $\pi p \rightarrow J/\psi p$ (a&b) and $\gamma p \rightarrow J/\psi p$ (c&d).

Mode	<i>P_c</i> (4	$(\frac{3}{2})(\frac{3}{2})$	$P_c(4450)(\frac{5}{2}^+)$		
Wouc	$Widths(\mathrm{MeV})$	Couplings	$Widths(\mathrm{MeV})$	Couplings	
$J/\psi p$	3.8	0.36	4.0	$0.368 \; ({\rm GeV}^{-1})$	
πp	0.06	$0.0053 \; ({\rm GeV^{-2}})$	0.2	$0.00695 \; ({ m GeV^{-3}})$	
γp	0.0007	0.00239	0.00113	$0.00123 \; ({\rm GeV}^{-1})$	

Chao-Wei Shen (ITP,CAS,B11) Decay behaviors of P_c hadronic molecules

Figure: Dependence of the total cross sections on the center-of-mass energy for different processes. The blue dot-dashed, green dashed and red solid lines stand for the $P_c(4380)\frac{3}{2}^-$, $P_c(4450)\frac{5}{2}^+$ states and total contribution, respectively.

From this point of view, it should be easier to search for the hidden-charm pentaquark states in the $\bar{D}^*\Lambda_c$ and $\bar{D}\Lambda_c$ production than the $J/\psi p$ production.

- Disentangling the hadronic molecule nature of the pentaquark-like structure
 - LHCb's observation of pentaquark states
 - Predictions prior to LHCb observation
 - Explanations after LHCb observation
 - Decay behaviors of the P_c hadronic molecules
 - The decay width of the P_c to all possible final states
 - Production of P_c states in photo- and pion- induced reactions
- 3 $\bar{D}\Lambda_c \bar{D}\Sigma_c$ interactions in Jülich-Bonn model
 - 4 Summary and prospects

Shen, Rönchen, Meißner and Zou:

We use Jülich-Bonn dynamical coupled-channel formalism to calculate the $\bar{D}\Lambda_c - \bar{D}\Sigma_c$ interactions.

The t-channel meson exchange and u-channel doubly-charmed baryon exchange are considered.

The T-matrix of the interaction of a baryon and a meson is formulated as

$$egin{aligned} T_{\mu
u}(p^{\prime\prime},p^{\prime},z) &= V_{\mu
u}(p^{\prime\prime},p^{\prime},z) + \sum_{\kappa} \int_{0}^{\infty} dp p^{2} V_{\mu\kappa}(p^{\prime\prime},p,z) \ & imes G_{\kappa}(p,z) T_{\kappa
u}(p,p^{\prime},z) \end{aligned}$$

with

$$G_{\kappa}(p,z)=rac{1}{z-E_{\mathfrak{a}}(p)-E_{b}(p)+i\epsilon}.$$

Figure: Total cross sections[mb].

Chao-Wei Shen (ITP,CAS,B11)

Decay behaviors of P_c hadronic molecules

Aug 31, 2017 26 / 30

We then applied it to the bottom case, $B\Lambda_b - B\Sigma_b$ interactions.

Chao-Wei Shen (ITP,CAS,B11)

- Disentangling the hadronic molecule nature of the pentaquark-like structure
 - LHCb's observation of pentaquark states
 - Predictions prior to LHCb observation
 - Explanations after LHCb observation
 - Decay behaviors of the P_c hadronic molecules
 - The decay width of the P_c to all possible final states
 - Production of P_c states in photo- and pion- induced reactions
- 3 $\bar{D}\Lambda_c \bar{D}\Sigma_c$ interactions in Jülich-Bonn model
 - 4 Summary and prospects

The relative ratio of the decays of $P_c^+(4380)$ to $\overline{D}^*\Lambda_c$ and $J/\psi p$ is very different for P_c being a $\overline{D}^*\Sigma_c$ or $\overline{D}\Sigma_c^*$ bound state with $J^P = \frac{3}{2}^-$.

From the total decay width, $P_c(4380)$ being a $\overline{D}\Sigma_c^*$ molecule state with $J^P = \frac{3}{2}^-$ and $P_c(4450)$ being a $\overline{D}^*\Sigma_c$ molecule state with $J^P = \frac{5}{2}^+$ is more reasonable.

More channels like $\overline{D}^*\Lambda_c$ and $\overline{D}^*\Sigma_c$ are taken into consideration in the Jülich-Bonn model calculations. (\leftarrow in progress.)

Searching in the $\overline{D}^*\Lambda_c$ and $\overline{D}\Lambda_c$ system in the forthcoming γp experiment at JLAB and πp experiment at JPARC can be used to disentangle the nature of these P_c states.

More pentaquark states, e.g. P_c states, $\Lambda_{c\bar{c}}$ states, are expected in further experimental results.

(人間) トイヨト イヨト ニヨ

THANK YOU FOR WATCHING

My Conquest is the Sea of Stars

Chao-Wei Shen (ITP,CAS,B11) Decay behaviors of P_c hadronic molecules

Aug 31, 2017 30 / 30