Non-resonant Deck-type contributions in diffractive $\pi^{-}\pi^{-}\pi^{+}$ production and their appearance in PWA.

D. Ryabchikov

E18 Technische Universität München

The reaction $\pi^- p
ightarrow \pi^- \pi^- \pi^+ p$ at $p_{\pi^-} = 190 \text{ GeV}$

- COMPASS detector
- Mass-independent Partial-Wave Analysis (PWA) with established $(\pi\pi)$ -isobars
- Mass-dependent analysis
- Deck process
 - Deck amplitude components
 - decomposition of Deck amplitude to partial waves and comparison with mass-dependent fits of 3π data
- Analysis with free amplitudes of $(\pi\pi)$ isobars

Apparatus

The reaction

The reaction $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ - major spectrums

46 000 000 events for $0.5 < m(3\pi) < 2.5~$ GeV and t' = 0.1 - 1~GeV 2

D. Ryabchikov (TUM E18)

Decay Amplitudes, Isobar model, Reflectivity basis

- Reggeon exchange, naturality $\eta = P_R(-1)^J_R$
- Gottfried-Jackson frame: SCM of X: $Z_{GJ} \| \vec{p}_{beam}^*, Y_{GJ} = [\vec{p}_{recoil}^* \times \vec{p}_{beam}^*]$
- Reflectivity basis for system of mesons: $|JM\epsilon\rangle = |JM\rangle - \varepsilon P(-1)^{J-M}|J-M\rangle$ later denoted as $\psi_i^{\varepsilon}(\tau, m)$
- At high beam energies: reflectivity ε equal to naturality η
- unpolarised target: $\varepsilon = \pm 1$ states do not interfere

Example of established isobar amplitude: $(\pi\pi)_S$

Mass-independent vs. mass-dependent

The mass-independent PWA events density: $\mathcal{I}(m, t', \tau) = \sum_{\varepsilon} \sum_{t} \left| \sum_{i} T_{i\varepsilon}^{\varepsilon}(m, t') \bar{\psi}_{i}^{\varepsilon}(\tau, m) \right|^{2} (1)$ The density matrix: $\rho_{i\,k}^{\varepsilon} = \sum_{r} T_{ir}^{\varepsilon} T_{kr}^{\varepsilon*}$ The partial wave intensities: $I_k(m, t') = \rho_{k}^{\varepsilon}$ Phase of wave *i* relative to wave k: $\phi(i-k)(m,t') = \arg(\rho_{i,k}^{\varepsilon})$ Events intensity including production and propagation of 3π intermediate states : $\mathcal{I}(m, t', \tau) =$ $\sum_{\epsilon} \sum_{r} \left| \sum_{i} \sum_{l} C_{ilr}^{\varepsilon} D_{il}(m, t', \zeta) \sqrt{\int \left| \psi_{i}^{\varepsilon}(\tau', m) \right|^{2} d\Phi_{3}(\tau')} \bar{\psi}_{i}^{\varepsilon}(\tau, m) \right|^{2} (2)$ The spin-density matrix: $\rho_{i\,k}^{\varepsilon} = \sum_{r} T_{ir}^{\varepsilon} T_{kr}^{\varepsilon*}$ comparing (1) and (2) mass-dependent model for spin-density matrix reads: $\rho_{i\,k}^{\varepsilon}(m,t') =$

 $\sqrt{\int |\psi_i^{\varepsilon}(\tau)|^2 d\Phi_3(\tau)} \sqrt{\int |\psi_k^{\varepsilon}(\tau)|^2 d\Phi_3(\tau)} \sum_r \sum_{l,m} C_{ilr}^{\epsilon} C_{kmr}^{\epsilon*} D_{il}(m,t',\zeta) D_{km}^*(m,t',\zeta)$

Mass-independent:

- partial waves are labelled as $J^{PC}M^{\epsilon}\xi\pi L$
- decay amplitudes for $\pi^-\pi^-\pi^+$ are constructed in the framework of helicity formalism
- 5 standart $\pi^+\pi^-$ isobars: $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$, $(\pi\pi)_S$ (AMP with $f_0(980)$ withdrawn) and $f_0(980)$ (FLATTE)
- rank=1 used (narrow $m(3\pi)$ and t' bins; helicity non-flip nature of Pomeron)
- 80 waves with $\varepsilon = +1$, 7 waves with $\varepsilon = -1$ and incoherent FLAT wave

Mass-dependent:

- 14x14 sub-density matrices measured independently in $m(3\pi)$ -bins and t'-bins are described by resonance model
- each partial wave is described by 1-3 resonant terms and background term
- Masses, widths and decay couplings of resonances do not depend on t', so fit should be done simultaneously in all t' intervals

Illustration of the mass-dependent sub-density matrix $0.100 < t' < 0.113 (\text{GeV/}c)^2$ $m_{3\pi}$ [GeV/c²]

sub-density matrix in the first t' bin

Production of 3π resonance (left) Deck process (right).

Deck process

Amplitudes for $\pi\pi \to \pi\pi$

Amplitude of $\pi^- N$ scattering: $T_{\pi N}(s_{\pi N}, t') = s_{\pi N} e^{-8t'}$

Pion propagator: $P(t_{\pi}) = \frac{m_{\pi}^2 e^{bt_{\pi}}}{m_{\pi}^2 - t_{\pi}}$ with $b = 1.7 \ GeV^{-1}$ and $m_{\pi} = m_{\pi^c}$ Deck decomposition to partial waves:

$$\psi_{{\sf Deck}}(au,{\sf m},{\sf t}')\sim\sum C_i({\sf m},{\sf t}')ar\psi_i(au,{\sf m})$$

$6^{-+}0^{+}\rho\pi H$ used to normalize Deck contribution

$1^{++}0^{+}$ mass-dep fit of the data vs. Deck decomposition

$2^{++}1^+$ mass-dep fit of the data vs. Deck decomposition

$1^{-+}1^+$ mass-dep fit of the data vs. Deck decomposition

$0^{-+}0^+f_0(980)\pi S$ - unusual t'-spectrum for BG

The mass-independent PWA intensity reads:

 $\mathcal{I}(m,t,\tau) = \sum_{\epsilon} \sum_{r} \left| \sum_{i} T^{\epsilon}_{ir}(m,t) \bar{\psi}^{\epsilon}_{i}(\tau,m) \right|^{2}$

The decay amplitudes $\psi_i^{\epsilon}(\tau, m)$ contain multiplicative complex amplitudes of intermediate isobars.

Same multiplicative functions (but depending on different kinematical variables) are contained in each linear term in case of bose- or isospin- symmetrisation – in arbitrary N-particle phase-space.

Example: $\Psi(\tau) = BW(m_{13})A(\Omega_{13}, \Omega_{1(13)}) + BW(m_{23})A(\Omega_{23}, \Omega_{1(23)})$

Let's express $BW(m) = \sum_{k} C_k \Theta_k$ Here Θ_k is set of functions =1 in each (non-equidistant) bin (m_k, m_{k+1}) .

Then $\psi(\tau) = \sum_{k} C_{k} \psi_{\Theta_{k}}(\tau)$ where $\psi_{\Theta_{k}}$ has $\Theta(m_{k}, m_{k+1})$ instead of BW(m) respectively.

Several selected amplitudes are decomposed to "theta-like" amplitudes. Using rank=1 fit will provide measurement of model-independent isobaric amplitudes in a given sub-systems, different for each decay quantum numbers.

Example: $0^{-+}, 1^{++}, 2^{-+} \rightarrow (\pi\pi)_{S}\pi^{-}$ in S,P and D waves (described below).

Intensity of $\pi\pi_S$ amplitude in 0^{-+} ($m(2\pi)$ vs. $m(3\pi)$)

$1^{++} \rightarrow (\pi\pi)_{S-isob}\pi$ intensity in established-isobares PWA

Intensity of $(\pi\pi)_S$ amplitude in 1^{++} ($m(2\pi)$ vs. $m(3\pi)$)

Non-resonant Deck-type contributions in diffractive

30 / 31

CONCLUSIONS

- The mass-independent PWA $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ of 46 000 000 events is carried out using set of 88 waves and for $0.1 < t' < 1.0 \text{ GeV}^2$ divided into 11 t' intervals
- First time the t'-resolved mass-dependent analysis of $\pi^-\pi^-\pi^+$ is performed using 14x14 sub-density matrix
 - The extraction of resonance parameters is based on intensity shapes and relative phase motions in $m(3\pi)$ bins
 - fitting simultaneously in set of t' intervals leads to improved separation between resonant and background components
- $\bullet\,$ The Deck mechanism is related to backgroud processes in diffractive production of $3\pi\,$
 - The partial-wave decomposition of Deck amplitude is performed, showing dominance of $1^{++}0^+\rho(770)\pi S$ with increase of its rate at lowest t'
 - Deck model has contributions of high orbital moment states at high $m(3\pi)$
 - Deck process has narrow t'-spectrum relative to 3π resonant production
 - It contributes to M = 1 partial waves, this can explain, in particular, dominance of background component in exotic $J^{PC}M^{\epsilon} = 1^{-+}1^{+}\rho\pi$ at low t'
- The novel analysis determining complex amplitudes of $(\pi\pi)_S$ isobars is performed. It demonstrates resonant nature in 3π and 2π systems on fully model-independent level.