Calculate PDFs using "lattice cross sections"

Yan-Qing Ma

Peking University

Based on YQM, Qiu, 1404.6860, and work *in preparation*

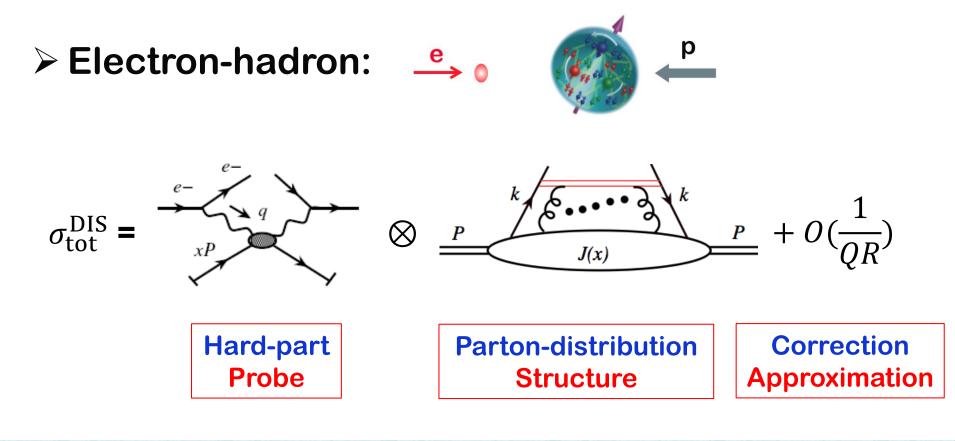
CRC110 general meeting of 2017 PKU, Beijing, Aug. 31st, 2017

I. Introduction to PDFs

- II. Lattice cross sections
- **III. Relation to other methods**
- **IV. Summary**

The key and a first principle method to relate experimental data to QCD theory

PKU, Aug. 31st, 2017



QCD factorization

Operator definition of PDFs

Spin-averaged quark distribution

$$f_{q/p}(x,\mu^2) = \int \frac{d\xi_-}{4\pi} e^{-ix\xi_- P_+} \langle P | \overline{\psi}(\xi_-) \gamma_+ \exp\left\{-ig \int_0^{\xi_-} d\eta_- A_+(\eta_-)\right\} \psi(0) | P \rangle$$

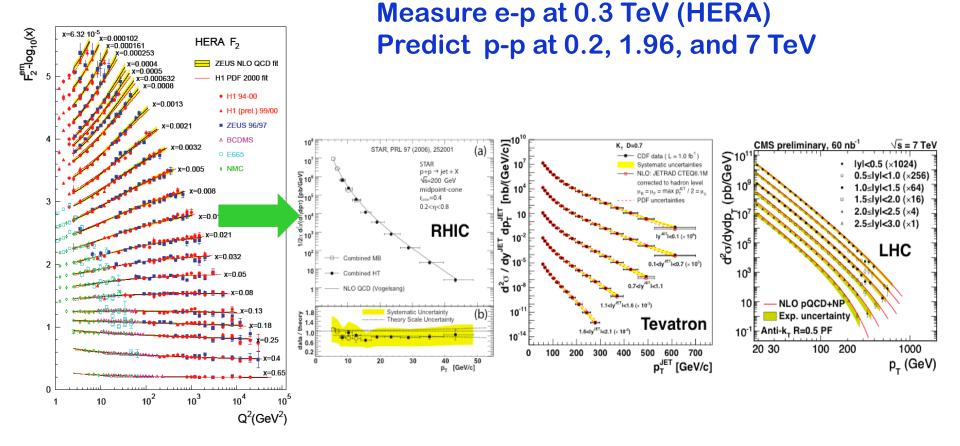
- Simplest of all parton correlation functions
- Unlike cross section, not direct physical observable; but well defined in QCD
- Boost invariant along "+" direction
- > Parton interpretation emerges in $A_+ = 0$ gauge
- Logarithmic UV divergent, renormalizable
- > Time dependent!

PKU, Aug. 31st, 2017

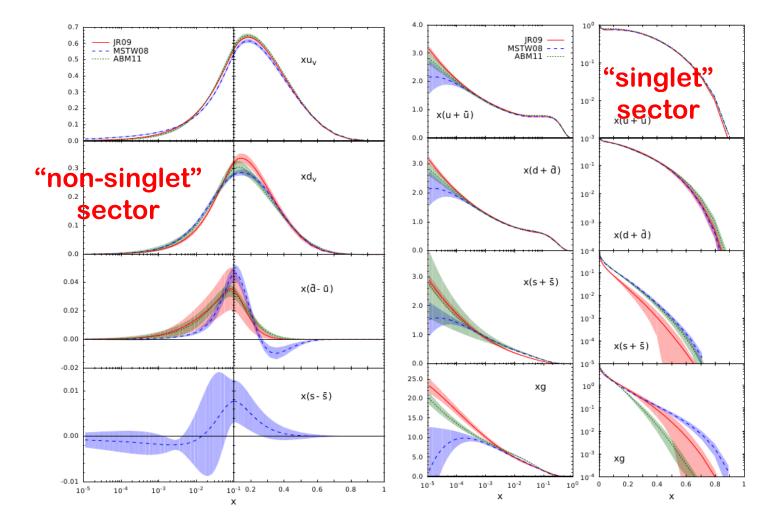
Extract PDFs by fitting data

Successful

PKU, Aug. 31st, 2017



Uncertainty of PDFs



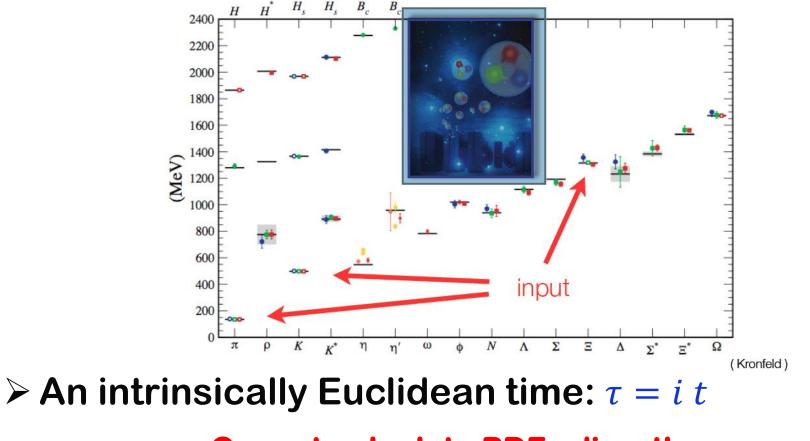
PKU, Aug. 31st, 2017

n 9

How to determine PDFs nonperturbatively from first principle?

Lattice QCD

The main nonperturbative approach to solve QCD
 Predict the hadron mass



Cannot calculate PDFs directly

PKU, Aug. 31st, 2017

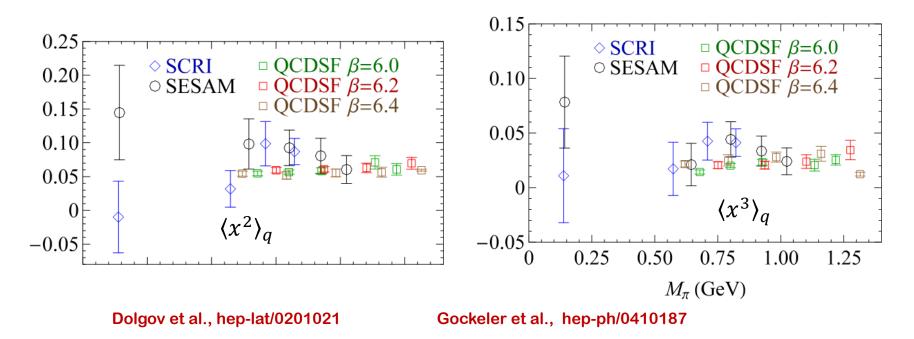
Traditional method

> Moments: matrix elements of local operators

 $\langle x^n(\mu^2) \rangle_q \equiv \int_0^1 dx \, x^n f_{q/p}(x,\mu^2)$

PKU, Aug. 31st, 2017

> Works, but only for limited moments



QUASIPDFS Ji, 1305.1539 goes to PDFs as
$$P_z \to \infty$$

$$\tilde{f}_{q/p}(x,\mu^2,P_z) = \int \frac{d\xi_z}{4\pi} e^{-ix\xi_z P_z} \langle P | \overline{\psi}(\xi_z) \gamma_z \exp\left\{-ig \int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\} \psi(0) | P \rangle$$

> OPE without OPE Chambers, et. al. , 1703.01153

$$T_{\mu\nu}(p,q) = \rho_{\lambda\lambda'} \int d^4x e^{iq \cdot x} \langle p, \lambda' | T J_{\mu}(x) J_{\nu}(0) | p, \lambda \rangle$$

Lattice cross sections YQM, Qiu, 1404.6860, and work *in preparation*

$$\sigma_n(\xi^2, \omega, P^2) = \langle P | T\{\mathcal{O}_n(\xi)\} | P \rangle$$

$$\widetilde{\sigma}_n(q^2, \widetilde{\omega}, P^2) = \int \frac{d^4\xi}{\xi^4} e^{iq \cdot \xi} \sigma_n(\xi^2, P \cdot \xi, P^2)$$

PKU, Aug. 31st, 2017

Both "Quasi PDFS" and "OPE /o OPE" are special cases of "Lattice cross sections"

I. Introduction to PDFs

II. Lattice cross sections

III. Relation to other methods

IV. Summary

A "no-go theorem"

- One can never accurately calculate a time-dependent quantity on lattice QCD
 - Lattice QCD has imaginary time
 - One will encounter difficulty whenever approaching its exact value
 - Quasi PDFs goes to PDFs as $P_Z \rightarrow \infty$, but one cannot take $P_Z \rightarrow \infty$ on lattice QCD

Comparison

PKU, Aug. 31st, 2017

• One can never exactly determine the position of a particle in quantum mechanism

Generalized uncertainty principle

- A possible way to determine a timedependent quantity on lattice:
 - Summing over time with a weighting function

 $P(u) = \int dt \ C(t, u) O(t) \rightarrow$ calculate P(u)

- If C(t, u) is peaked around t_0 , P(u) can be used to determine $O(t_0)$
- If C(t, u) is very sharp, uncertainty of calculated P(u) will be large
- A "generalized uncertainty principle": determine O(t) within a tolerant uncertainty

Comparison

PKU, Aug. 31st, 2017

• One can determine the position of a particle within the uncertainty:

 $\Delta x \Delta p \ge \hbar/2$

"Lattice cross sections"

 $P(u) = \int dt \ C(t, u) O(t)$

\succ Conditions for P(u) to be useful

- 1. Calculable on lattice QCD using an Euclidean time: has an operator definition in QCD, no time dependence
- 2. With known P(u), C(t,u), which relating P(u) to O(t), can be calculated using other methods

Benefit from asymptotic freedom

- Occasionally, C(t, u) is perturbatively calculable
- P(u) can be factorized to O(t)

Then P(u) is a "lattice cross section" (LCS) to determine O(t)

LCSs to determine PDFs

$\blacktriangleright LCSs in coordinate space \sigma_n(\xi^2, \omega, P^2) \qquad \omega = P \cdot \xi$ and in momentum space $\tilde{\sigma}_n(q^2, \tilde{\omega}, P^2) \qquad \tilde{\omega} = \frac{2P \cdot q}{q^2}$

- Basically hadronic matrix elements
- $1/\xi^2$ and q^2 : hard scales to enable factorization
- ω and $\tilde{\omega}$: parameters

PKU, Aug. 31st, 2017

Conditions for a good LCS

- ① Calculable on Euclidean lattice QCD
- ② Renormalizable for UV divergences
- **③ Factorizable for CO divergence with IR safe coefficients**

$$\sigma_n(\xi^2, \omega, P^2) = \sum_a \int_{-1}^1 \frac{dx}{x} f_a(x, \mu^2) K_n^a(\xi^2, x\omega, x^2 P^2, \mu^2) + O(\xi^2 \Lambda_{\text{QCD}}^2)$$

• The last condition relates LCSs to PDFs

Hadronic matrix elements

Coordinate space or momentum space

 $\sigma_n(\xi^2, \omega, P^2) = \langle P | T\{\mathcal{O}_n(\xi)\} | P \rangle \qquad \widetilde{\sigma}_n(q^2, \widetilde{\omega}, P^2) = \int \frac{d^4\xi}{\xi^4} e^{iq \cdot \xi} \sigma_n(\xi^2, P \cdot \xi, P^2)$

Possible choices of the nonlocal operator

 $\mathcal{O}_{S}(\xi) = \xi^{4} Z_{S}^{-2} [\overline{\psi}_{q} \psi_{q}](\xi) [\overline{\psi}_{q} \psi_{q}](0) ,$ $\mathcal{O}_{V_{1}}(\xi) = -\frac{\xi^{4}}{2} Z_{V}^{-2} [\overline{\psi}_{q} \gamma_{\nu} \psi_{q}](\xi) [\overline{\psi}_{q} \gamma^{\nu} \psi_{q}](0) ,$ $\mathcal{O}_{V_{2}}(\xi) = \xi^{2} Z_{V}^{-2} [\overline{\psi}_{q} \xi \psi_{q}](\xi) [\overline{\psi}_{q} \xi \psi_{q}](0) ,$ $\mathcal{O}_{V_{2}'}(\xi) = \xi^{2} Z_{V'}^{-2} [\overline{\psi}_{q} \xi \psi_{q'}](\xi) [\overline{\psi}_{q'} \xi \psi_{q}](0) ,$

Gauge invariant locally

PKU, Aug. 31st, 2017

Renormalization is very simple

 $\mathcal{O}_q(\xi) = Z^{-1}(\xi^2) \overline{\psi}_q(\xi) \, \xi \Phi(\xi, 0) \, \psi_q(0) \,,$

 $\Phi(\xi,0) = \mathcal{P}e^{-ig\int_0^1 \xi \cdot A(\lambda\xi) \, d\lambda}$

- Gauge dependent locally, path ordered gauge link is needed
- Renormalization is complicated but
 known Ishikawa YQM, Qiu, Yoshida, 1707.03107

Straight forward to construct much more operators with both quark fields and gluon fields

All of them are factorizable to all orders in perturbation theory YQM, Qiu, work in preparation

Factorization

where

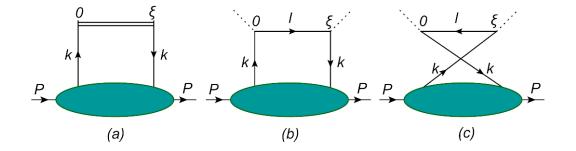
PKU, Aug. 31st, 2017

$$\begin{split} K_n^a &= \sum_J 2W_n^{(J,a)}(\xi^2,\mu^2) \, \Sigma_J(x\omega,x^2P^2\xi^2) \\ \widetilde{K}_n^a &= \int \frac{d^4\xi}{\xi^4} \, e^{iq\cdot\xi} K_n^a(\xi^2,xP\cdot\xi,x^2P^2,\mu) \end{split}$$

• Note: \widetilde{K}_n^a is unambiguous only for $\widetilde{\omega}^2 < 1$

Matching coefficients

Obtained by calculating Feynman diagrams



$$K_q^{q(0)}(Q^2, x\omega, 0, \mu) = \frac{1}{2} \text{Tr}[k \xi] e^{-i\xi \cdot k} = 2x\omega e^{-ix\omega}$$

$$K_S^{q(0)}(Q^2, x\omega, 0, \mu) = ix\omega \left(e^{ix\omega} - e^{-ix\omega}\right)$$

$$\widetilde{K}_{S}^{q(0)}(Q^{2}, x\widetilde{\omega}, 0, \mu) = \frac{x^{2}\widetilde{\omega}^{2}}{1 - x^{2}\widetilde{\omega}^{2} - i\varepsilon}$$

Good LCSs

Conditions satisfied up to now

- Operators, and thus matrix elements, are renormalizable
- Matrix elements are factorizable

Final condition: calculable on Euclidean lattice

$$\sigma_n(\xi^2, \omega, P^2) = \langle P | T\{\mathcal{O}_n(\xi)\} | P \rangle \quad \text{with } \xi_0 = 0$$

$$\widetilde{\sigma}_n(q^2,\widetilde{\omega},P^2) = \int \frac{d^4\xi}{\xi^4} e^{iq\cdot\xi} \sigma_n(\xi^2,P\cdot\xi,P^2) \quad \text{with } q_0 = 0$$

With these conditions, σ_n and $\tilde{\sigma}_n$ are good LCSs to extract PDFs

- I. Introduction to PDFs
- II. Lattice cross sections

III. Relation to other methods

IV. Summary

➢ Quasi PDFs Ji, 1305.1539

$$\tilde{f}_{q/p}(x,\mu^2,P_z) = \int \frac{d\xi_z}{4\pi} e^{-ix\xi_z P_z} \langle P|\overline{\psi}(\xi_z) \gamma_z \exp\left\{-ig \int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\} \psi(0)|P\rangle$$

Linear combination of LCSs

$$\sigma_n^{\mathrm{II}}(|\vec{P}|^2\cos^2\theta, x, P^2) = \int \frac{d\omega}{\omega} \frac{e^{-ix\omega}}{4\pi} \sigma_n(\xi^2, \omega, P^2)$$

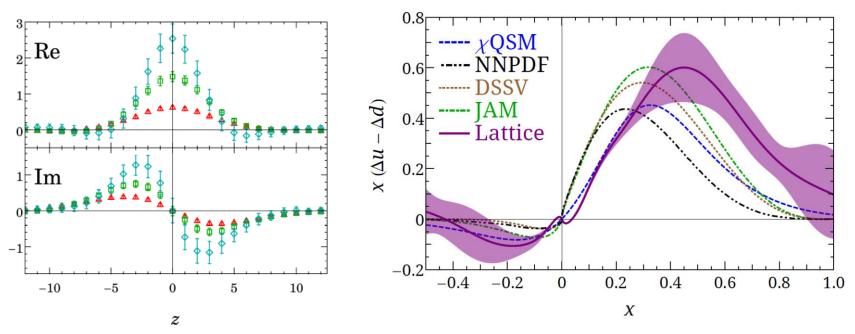
with fixed $|\vec{P}| \quad \xi^2 = -\frac{\omega^2}{|\vec{P}|^2\cos^2\theta}$

 $\sigma_q^{\rm II}$ reproduces quasi PDF if both \vec{P} and $\vec{\xi}$ are along "z" direction

Lattice results of quasi PDFs

Exploratory studies

Lin et al. 1402.1462 Alexandrou et al. 1504.07455 Chen et al. 1603.06664



Works, convergence not bad

PKU, Aug. 31st, 2017

- Shape similar to experimental data
- Renormalization is needed, but complicated

Relation to OPE /o OPE

> OPE without OPE

Chambers, et. al., 1703.01153

$$T_{\mu\nu}(p,q) = \rho_{\lambda\lambda'} \int d^4x e^{iq \cdot x} \langle p, \lambda' | T J_{\mu}(x) J_{\nu}(0) | p, \lambda$$

With $\mu = \nu = 3$ and $p_3 = q_3 = q_4 = 0$
$$T_{33}(p,q) = 4\omega \int_0^1 dx \frac{\omega x}{1 - (\omega x)^2} F_1(x,q^2)$$

 $\succ \tilde{\sigma}_n$ with n = S

$$\widetilde{\sigma}_S \approx \int_{-1}^1 dx \, \frac{x\widetilde{\omega}^2}{1 - x^2\widetilde{\omega}^2 - i\varepsilon} f_q(x,\mu^2) + O(\alpha_s)$$

- Reproduces the T_{33} in "OPE /o OPE"
- Can be used to extract PDFs if $\tilde{\omega}^2 < 1$

Lattice results of OPE /o OPE

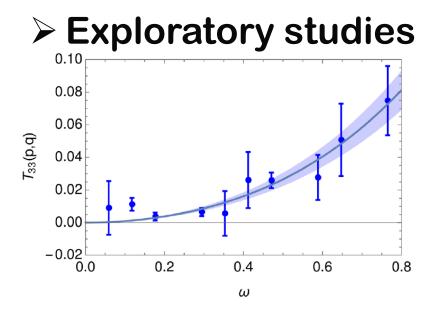


FIG. 6. The proton Compton amplitude $T_{33}(p,q)$ for momenta $\vec{p} = (2, -1, 0), (-1, 1, 0), (1, 0, 0), (0, 1, 0), (2, 0, 0), (-1, 2, 0), (1, 1, 0), (0, 2, 0), (2, 1, 0), (1, 2, 0), from left to right, and <math>\vec{q} = (3, 5, 0)$, in lattice units. The current has been attached to the *d* quark, leading to the 'handbag' diagram in Fig. 1. Z_V has been taken from [17]. The solid line shows a sixth order polynomial fit (giving $\chi^2/\text{dof} = 0.9$), and the shaded area shows the error.

PKU, Aug. 31st, 2017

Chambers, et. al., 1703.01153

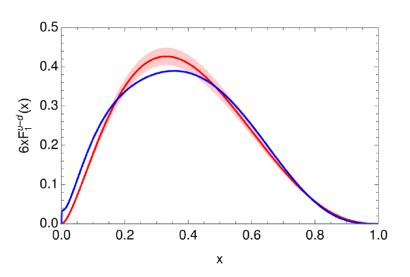


FIG. 5. The structure function $F_1^{u-d}(x)$ obtained from the Mellin transform of Eq. (22) fitted to the moments (-), compared with the target structure function $6xF_1(x) = x[u(x) - d(x)]$ (-). For the error estimate see the text.

- Shape similar to target structure function
- Constrained by $\tilde{\omega}^2 < 1$, may not have enough information to determine PDFs

"Lattice cross section" = hadronic matrix elements that are calculable + renormalizable + factorizable

Summary

- Quasi-PDFs and "OPE /o OPE" are special cases of good LCSs
- Much more good LCSs are available to determine PDFs
- Construction of good LCSs for GPDs, TMDs, ..., are straight forward

PKU, Aug. 31st, 2017

Back up

OPE

\succ Factorization

$$\sigma_n(\xi^2, \omega, P^2) = \sum_{J,a} W_n^{(J,a)}(\xi^2, \mu^2) \xi^{\nu_1} \cdots \xi^{\nu_J} \langle P | \mathcal{O}_{\nu_1 \cdots \nu_J}^{(J,a)}(\mu^2) | P \rangle$$
$$\langle P | \mathcal{O}_{\nu_1 \cdots \nu_J}^{(J,a)}(\mu^2) | P \rangle = 2A^{(J,a)}(\mu^2) \left(P_{\nu_1} \cdots P_{\nu_J} - \text{traces} \right)$$

$$\Sigma_{J}(\omega, P^{2}\xi^{2}) \equiv \xi^{\nu_{1}} \cdots \xi^{\nu_{J}} (P_{\nu_{1}} \cdots P_{\nu_{J}} - \text{traces})$$
$$= \sum_{i=0}^{i_{\text{max}}} C_{J-i}^{i}(\omega)^{J-2i} (P^{2}\xi^{2}/4)^{i} ,$$

$$A^{(J,a)}(\mu^2) = \int_{-1}^{1} dx x^{J-1} f_{a/h}(x,\mu^2)$$

$$\begin{split} K_n^a &= \sum_J 2W_n^{(J,a)}(\xi^2, \mu^2) \, \Sigma_J(x\omega, x^2 P^2 \xi^2) \quad |\omega| \ll 1 \text{ and } |P^2 \xi^2| \ll 1 \\ \tilde{K}_n^a &= \int \frac{d^4 \xi}{\xi^4} \, e^{iq \cdot \xi} K_n^a(\xi^2, xP \cdot \xi, x^2 P^2, \mu) \end{split}$$

PKU, Aug. 31st, 2017

Momentum space

Condition for factorization

$$\widetilde{\sigma}_n(q^2, \widetilde{\omega}, P^2) = \int \frac{d^4\xi}{\xi^4} e^{iq\cdot\xi} \sigma_n(\xi^2, P\cdot\xi, P^2) \qquad \widetilde{\omega} = \frac{2P\cdot q}{q^2}$$

$$\int \frac{d^4\xi}{\xi^4} \,\xi^\nu \,e^{i(q+xP)\cdot\xi}$$

$$\widetilde{\sigma}_n = \sum_a f_a \otimes \widetilde{K}_n^a + O(\Lambda_{\text{QCD}}^2/q^2)$$
$$\widetilde{K}_n^a = \int \frac{d^4\xi}{\xi^4} e^{iq\cdot\xi} K_n^a(\xi^2, xP\cdot\xi, x^2P^2, \mu) \qquad \qquad \widetilde{\omega}^2 < 1$$

PKU, Aug. 31st, 2017

Factorization

> Factorize the last kernel, and then recursively:

$\widehat{\mathcal{P}}$: pick up the singular part of integration

$$\begin{split} \tilde{f}_{q/p} &= \lim_{m \to \infty} C_0 \sum_{i=0}^m K_0^i + \text{UVCT} = \lim_{m \to \infty} C_0 \sum_{i=0}^m K_0^i \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=0}^{m-1} K^i (1 - \widehat{\mathcal{P}}) K \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=1}^m \left[(1 - \widehat{\mathcal{P}}) K \right]^i \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K , \end{split} \qquad \tilde{f}_{q/p} = \begin{bmatrix} C_0 \frac{1}{1 - (1 - \widehat{\mathcal{P}}) K} \end{bmatrix}_{\text{ren}} \begin{bmatrix} \frac{1}{1 - \widehat{\mathcal{P}} K} \end{bmatrix} \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=1}^m \left[(1 - \widehat{\mathcal{P}}) K \right]^i \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K , \end{aligned}$$

Factorizable as far as quasi-PDFs are multiplicatively renormalized

PKU, Aug. 31st, 2017

Coordinate space definition

$$\tilde{F}_{q/p}(\xi_z, \tilde{\mu}^2, p_z) = \frac{e^{ip_z \xi_z}}{p_z} \langle h(p) | \overline{\psi}_q(\xi_z) \, \frac{\gamma_z}{2} \Phi_{n_z}^{(f)}(\{\xi_z, 0\}) \, \psi_q(0) | h(p) \rangle$$

Conjecture of all-orders renormalization

$$\tilde{F}_{i/p}^{R}(\xi_{z}, \tilde{\mu}^{2}, p_{z}) = e^{-C_{i}|\xi_{z}|} Z_{wi}^{-1} Z_{vi}^{-1} \tilde{F}_{i/p}^{b}(\xi_{z}, \tilde{\mu}^{2}, p_{z}).$$

Ishikawa, YQM, Qiu, Yoshida, 1609.02018 Chen, Ji, Zhang, 1609.08102 Constantinou, H. Panagopoulos, 1705.11193

Rigorous proof is needed!

Proof: Importance and difficulty

> Why proof is important?

- All-order proof of factorization needs multiplicative renormalization YQM, Qiu, 1404.6860, 1412.2688
- Whether mixing with other operators under renormalization? A close set of operators are needed

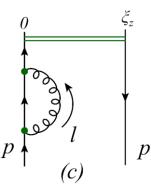
Why proof is difficult

- Because of *z*-direction dependence, Lorentz symmetry is broken, hard to exhaust all possible UV divergences
- Renormalization of composite operator is needed

Broken of Lorentz symmetry

Identifying UV divergences

- Renormalization of QCD in covariant gauge: only from 4dimensional loop integration, all components become large
- Quasi-PDFs: 3-dimensional integration as while as 4dimensional integration can generate UV divergences



UV: 4-D integration

$$\int \frac{d^d l}{(2\pi)^d} \frac{1}{l^2(p-l)^2}$$

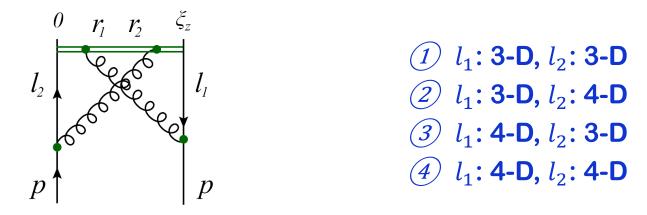
PKU, Aug. 31st, 2017

$$\int \frac{d^{3}\overline{l}}{l^{2}} = \int \frac{d^{3}\overline{l}}{\overline{l^{2}} - l_{z}^{2}}$$

$$l^{\mu} = \overline{l}^{\mu} + l_{z}n_{z}^{\mu}$$

Broken of Lorentz symmetry con.

- Hard to identify all UV regions
- Need to consider 3-D and 4-D integrations for each loop



• A *n*-loop diagram, to identify all possible UV divergences, needs consider 2^{*n*} different cases!

Composition operator renormalization

> Quasi-quark PDF in $A_z = 0$ gauge: no gauge link

$$\tilde{F}_{q/p}(\xi_z, \tilde{\mu}^2, p_z) = \frac{e^{ip_z \xi_z}}{p_z} \langle h(p) | \overline{\psi}_q(\xi_z) \, \frac{\gamma_z}{2} \, \psi_q(0) | h(p) \rangle$$

• Renormalization of quark field $\bar{\psi}_q$ and ψ_q : taking care by renormalized QCD Lagrangian



• Renormalization of the bi-local operator as a whole: still needs to study

\blacktriangleright Comparison: Quark PDF in $A_+ = 0$ gauge

Similar for quark field renormalization

PKU, Aug. 31st, 2017

- Renormalization of the bi-local operator as a whole: needed!
- It is this renormalization that mixes quark PDF with gluon PDF

Keys for a rigorous proof

Ishikawa YQM, Qiu, Yoshida, 1707.03107

Working in Feynman gauge

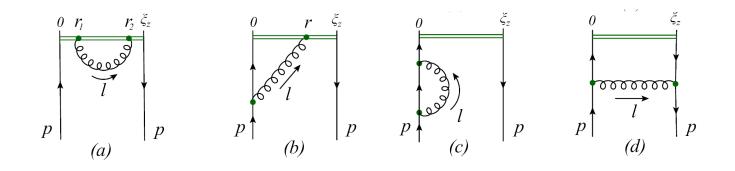
- Because renormalization of QCD Lagrangian in Feynman gauge is well known
- Key to prove the renormalization: show that UV divergences are local in space-time
 - Nontrivial conclusion! E.g. UV divergences for normal PDFs are non-local in "-" direction
 - The most difficult part in our proof
 - One can guess this, but a rigorous proof is badly needed

One-loop calculation

One-loop diagrams: quark in a quark

Quasi quark PDFs at one loop level

PKU, Aug. 31st, 2017



- Will demonstrate that UV divergences are local in space-time, which is significantly different from normal PDFs
- Note: normal PDFs, UV divergences from the regio $(l_+, l_-, l_\perp) \sim (1, \lambda^2, \lambda)$ with $\lambda \to \infty$, nonlocal in '-' direction in coordinate space.
- Thus, renormalization of normal PDFs is a convolution, while renormalization of quasi-PDFs is multiplicative factor

Fig.1 (a)

 $p \left(\begin{array}{c} 0 & r_{l} & r_{2} & \xi_{z} \\ \hline & & & \\ & &$

- Cutoff "a" between fields along gaugelink
- Conclusion independent of regulators

PKU, Aug. 31st, 2017

$$\int \frac{d^3 \bar{l}}{l^2} = \int \frac{d^3 \bar{l}}{\bar{l}^2 - l_z^2} \qquad d^4 l = d^3 \bar{l} \, dl_z \qquad l^2 = \bar{l}^2 - l_z^2 = \int d^3 \bar{l} \left(\frac{1}{\bar{l}^2} + \frac{l_z^2}{(\bar{l}^2 - l_z^2)\bar{l}^2} \right) \qquad \int dl_z e^{i l_z (r_2 - r_1)} = 2\pi \delta(r_2 - r_1)$$

• First term vanishes because $r_1 \neq r_2$, thus 3D integration is finite

Fig. 1(a) cont.

- Fix 3D, l_z integration is finite
- UV divergent only if all 4 components of l^{μ} go to infinity

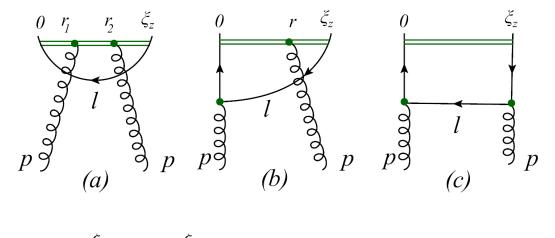
$$M_{1a} \stackrel{\text{div}}{=} -\frac{\alpha_s C_F}{\pi} \frac{|\xi_z|}{a} + \frac{\alpha_s C_F}{\pi} \ln \frac{|\xi_z|}{a}$$

- At this order, UV divergences only come from the region where all loop momenta go to infinity, thus localized in coordinate space.
- Will show next: this behavior remains true up to all order in perturbation theory.

$$M^{(1)} \stackrel{\text{div}}{=} M_{1a} + 2 \times M_{1b} + 2 \times \frac{1}{2} M_{1c} + M_{1d}$$
$$= \frac{\alpha_s C_F}{\pi} \left(-\frac{|\xi_z|}{a} + 2\ln\frac{|\xi_z|}{a} - \frac{1}{4\epsilon} \right).$$

Gluon to quark

PKU, Aug. 31st, 2017



$$M_{2a} \propto \int_{0}^{\xi_{z}} dr_{1} \int_{r_{1}}^{\xi_{z}} dr_{2} \int d^{4}l \, e^{-il_{z}\xi_{z}} \frac{l_{z}}{l^{2}}$$
$$= \frac{\xi_{z}^{2}}{2} \int dl_{z} \, e^{-il_{z}\xi_{z}} \, l_{z} \int d^{3}\bar{l} \left(\frac{1}{\bar{l}^{2}} + \frac{l_{z}^{2}}{(\bar{l}^{2} - l_{z}^{2})\bar{l}^{2}}\right)$$

• UV divergence from 3-D $\propto \delta'(\xi_z)$, vanishes for finite ξ_z

One-loop diagrams: quark in a gluon con.

> Finite term

$$\begin{aligned} \frac{\xi_z^2}{2} \int dl_z \, e^{-il_z \xi_z} \, l_z \int d^3 \bar{l} \frac{l_z^2}{(\bar{l}^2 - l_z^2) \bar{l}^2} \\ \propto & \frac{\xi_z^2}{2} \int dl_z \, e^{-il_z \xi_z} \, \frac{l_z^3}{|l_z|} \\ = & \frac{2i}{\xi_z}, \end{aligned}$$

- **Divergent** as $\xi_z \to 0$
- Result in bad large \tilde{x} behavior in momentum space

Power counting

PKU, Aug. 31st, 2017

> UV divergence at higher loops

- Construct higher-loop diagrams from lower-loop diagrams by adding gluons to it
- Define divergence index ω_3 (ω_4) for 3D (4D) integration
- Using $\Delta \omega_3 (\Delta \omega_4)$ to denote divergence index changes for 3D (4D) integration

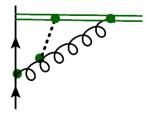
Condition for renormalizability

• Finite number of divergent topologies

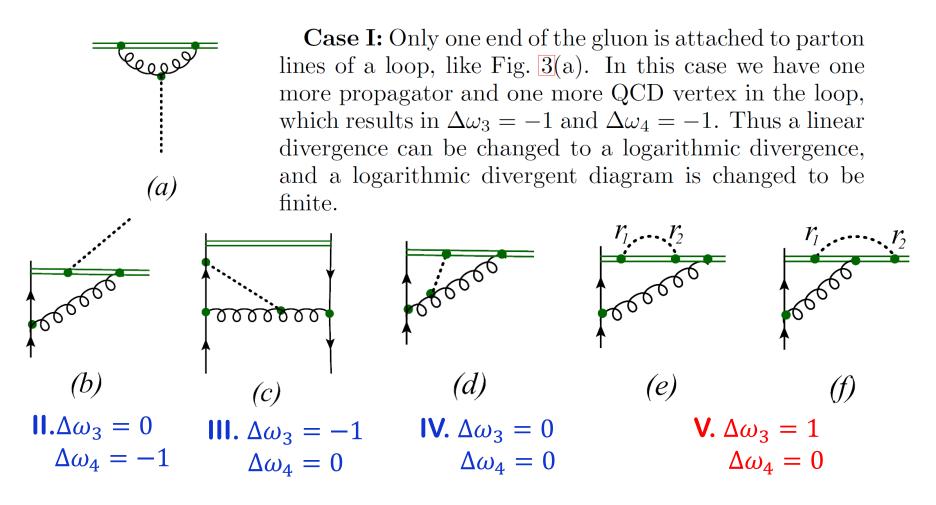
PKU, Aug. 31st, 2017

• Sufficient condition: $\Delta \omega_3 \leq 0$ and $\Delta \omega_4 \leq 0$ for all cases, but not a necessary condition

Divergence index



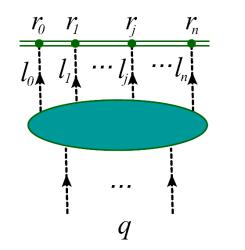
Cases I-V



- $\Delta \omega_3 > 0$ for case V, may result in infinite topologies of UV div.
- Dangerous for the renormalizability

PKU, Aug. 31st, 2017

Gauge-link-irreducible (GLI) diagram



PKU, Aug. 31st, 2017

- Diagram is connected no matter how many cuts are applied on the gauge link, or remove it
- Similar as the terminology 1PI

$$l_0 = q - l_1 - \dots - l_n$$

• Can be generated from one-loop diagrams combined with insertions in Cases I, III, IV, all of which has $\Delta \omega_3 \leq 0$ and $\Delta \omega_4 \leq 0$

GLI diagram

• Thus superficial UV divergence index $\omega \leq 1$

\succ Dependence on l_j

$$e^{iq_z r_0} \prod_{j=1}^n \int_{r_{j-1}+a}^{r_{max}-a} dr_j \int \frac{d^4 l_j}{(2\pi)^4} e^{il_{jz}(r_j-r_0)} \mathcal{M}(q, l_1, \cdots, l_n)$$

- Numerator in *M*: decompose to \overline{l}_j and l_{jz}
- **Denominator in** *M*:

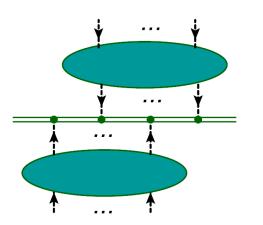
$$\frac{1}{(l_j + k)^2} = \frac{1}{\Delta - 2k_z l_{jz} - l_{jz}^2}$$
$$= \frac{1}{\Delta} + \frac{2k_z l_{jz}}{\Delta^2} + \frac{(\Delta + 4k_z^2 + 2k_z l_{jz})l_{jz}^2}{(\Delta - 2k_z l_{jz} - l_{jz}^2)\Delta^2}$$

$$\Delta = (\bar{l}_j + \bar{k})^2 - k_z^2$$

- Last term: finite for integration of \bar{l}_j
- > UV divergence from integration of $\overline{l_j}$
- l_{jz} dependence is factorized out, vanish for finite $r_j r_0$ $\int dl_{jz} e^{il_{jz}(r_j - r_0)} l_z^m \propto \delta^{(m)}(r_j - r_0)$

Quasi-PDFs: UV divergences local

> A non-GLI diagram made up by 2 GLI dia.



PKU, Aug. 31st, 2017

- Superficial UV divergence index $\omega \leq 2$
 - For each GLI sub-diagram, similar argue for GLI diagram. UV finite if any 3-D integration is applied

> Easily generate to any non-GLI diagram:

- Overall UV divergence, obtained by fixing "z" component of any loop momentum, eventually vanishes after the integration of this "z" component
- UV divergences of quasi-PDFs: from the region whether all loop momenta become large → local in space-time
- As $\Delta \omega_4 \leq 0$ for all cases: finite div. topology, renormalizable

PDFs: UV divergences non-local

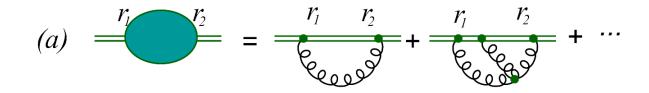
> 3-D' (l_{-} and l_{\perp}) integration of PDFs

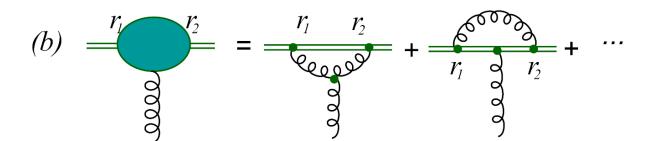
$$\frac{1}{(l+k)^2} = \frac{1}{\hat{\Delta} + 2l_+(l_- + k_-)} \qquad \hat{\Delta} = 2k_+(l_- + k_-) - (\vec{l}_\perp + \vec{k}_\perp)^2$$
$$= \frac{1}{\hat{\Delta}} - \frac{2(l_- + k_-)l_+}{\hat{\Delta}^2} + \frac{4(l_- + k_-)^2 l_+^2}{(\hat{\Delta} + 2l_+(l_- + k_-))\hat{\Delta}^2}$$

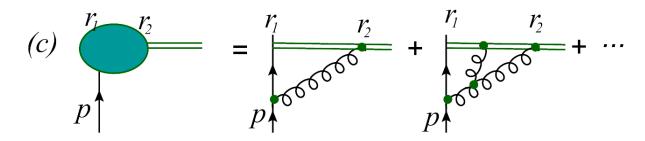
- Similar argue as quasi-PDFs: l_+ is factorized in the first two terms ,vanish under 3-D' integration
- But the last term is still UV divergent under 3-D' integration
- ► UV divergent region and non-locality $(l_+, l_-, \vec{l_\perp}) \sim (1, \lambda^2, \lambda) \text{ as } \lambda \to \infty$ $l_-l_+ \sim l_+^2 \sim \lambda^2$
- Non-local in "-" direction in space-time

PKU, Aug. 31st, 2017

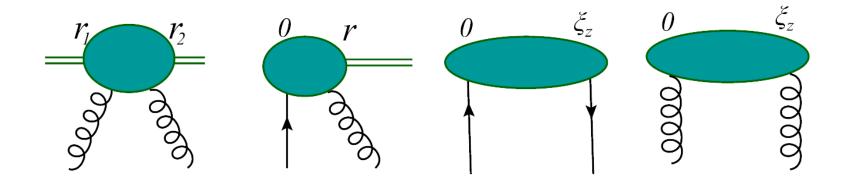
UV divergent topologies







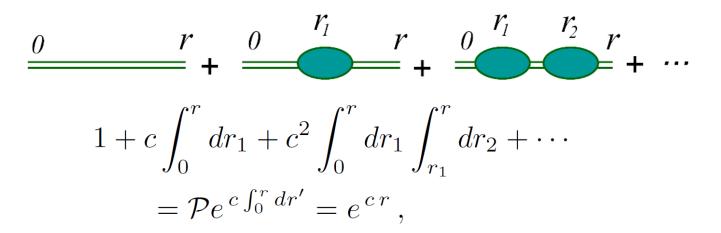
UV finite topologies



 The last diagram: no mixing between quasi-quark PDF and quasi-gluon PDF

Renormalization

Renormalization



• It is allowed to introduce an overall factor $e^{-c|\xi_z|}$ to remove all power UV divergences

> Interpretation

PKU, Aug. 31st, 2017

Mass renormalization of test particle

Dotsenko, Vergeles, NPB (1980)

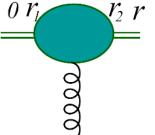
Log divergence related to gaugelink

Dotsenko, Vergeles, NPB (1980)

Log div. from gaugelink self energy

- Besides power divergence, there are also logarithmic UV divergences
- It is known that these divergences can be removed by a "wave function" renormalization of the test particle, Z_{wq}^{-1} .

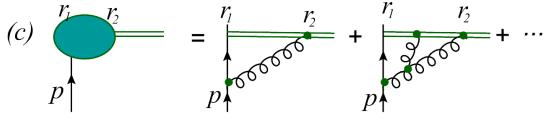
Log div. from gluon-gaugelink vertex



PKU, Aug. 31st, 2017

• Logarithmic UV: can be absorbed by the coupling constant renormalization of QCD.

UV from vertex correction



- Remove UV div. at fixed order
 - The most dangerous UV diagram, may mix with other operators
 - Locality of UV divergence: no dependence on $r_2 r_1$ or p
 - UV divergence is proportional to quark-gaugelink vertex at lowest order, with a constant coefficient
 - A constant counter term is able to remove this UV divergence.

Renormalization to all-orders

PKU, Aug. 31st, 2017

 Using bookkeeping forests subtraction method, the net effect is to introduce a constant multiplicative renormalizaton factor
 Z⁻¹_{vq} for the quark-gaugelink vertex.

Ishikawa YQM, Qiu, Yoshida, 1707.03107 Using renormalized QCD Lagrangian:

Renormalization

• All UV divergences (too all orders) can be removed by the following renormalization

 $\tilde{F}_{i/p}^{R}(\xi_{z}, \tilde{\mu}^{2}, p_{z}) = e^{-C_{i}|\xi_{z}|} Z_{wi}^{-1} Z_{vi}^{-1} \tilde{F}_{i/p}^{b}(\xi_{z}, \tilde{\mu}^{2}, p_{z}).$

- Renormalization: multiplicative factor, not mix with other operators
 - Significantly different from normal PDFs

PKU, Aug. 31st, 2017

Quasi quark PDF is indeed a "good lattice cross section"