

High mass X→WW→IvIv search

Yongke Zhao¹, Guangyi Zhang²

1 Shandong University

2 University of Science and Technology of China

CLHCP 2017, Nanjing

23/12/2017

Introduction

- Signal models
- Background estimation and event categorization
- Event selection and signal acceptance
- Dominant systematics
- Results
- Conclusion

Introduction

Motivation: search for a heavy neutral Higgs boson and other resonances decaying via $X \rightarrow WW \rightarrow e\nu\mu\nu$

gluon-gluon fusion (ggF) quark-quark annihlation (qqA) vector boson fusion (VBF)

- **Data**: full Run-II 2015+2016 datasets (**36.1 fb**⁻¹) @ 13 TeV
- Mass range: [200 GeV, 5 TeV]
- Paper status: submitted to EPJC and accepted (arXiv:1710.01123)

Signal models

Signal models considered in the analysis

Model	Resonance	Production mode		
	эрш	ggF	qqA	VBF
Narrow width approximation (NWA)		x		х
Two Higgs doublet models(2HDM)	Spip 0	х		х
Large width assumption (LWA)	Spin-0	х		х
Georgi-Machacek model (GM)				x
Heavy vector triplet (HVT)	Spin-1		Х	x
Bulk Randall-Sundrum (RS) graviton Effective Lagrangian model (ELM)	Spin-2	Х		x

For LWA, widths of 5%, 10% and 15% * m_H are considered

Background estimation and event categorization

- Top (ttbar and single-top), WW (qq \rightarrow WW and gg \rightarrow WW) as dominant backgrounds, normalised to the data in control regions (CRs)
- W+jets is estimated with using fake-factor method (data-driven)
- Backgrounds with small contribution are estimated using MC prediction: Z+jets (NNLO), Non-WW diboson (NLO), H125

Event categorization

ggF category (quasi-inclusive ggF,

VBF phase spaces excluded)

* Physics results obtained finally from a simultaneous fit to the data in all SRs and CRs

Event selection

Signal acceptance

A simple and general event selection optimisation method developed for the analysis, divided mainly into 2 steps:

- ① Choose most discriminating variables using BDT techniques
- ② Optimise cut values based on maximisation of signal significance
- ATLAS internal note: <u>https://cds.cern.ch/record/2128947</u>
- Signal selection acceptance * efficiency in combined 3 SRs

Dominant systematics for backgrounds

Тор		Expe	rimenta	I	Theo	oretical		
[Source	Jet	<i>b</i> -tag	ME+PS	Scale	Single top	PDF	Total
	SR _{ggF}	5.2	17	1.3	3.0	4.2	2.5	19
	SR _{VBF1J}	9.6	7.8	1.0	1.6	5.9	2.6	15
	SR _{VBF2J}	9.7	14	9.5	5.0	2.1	3.4	21
	Top CR _{ggF}	2.2	4.8	0.34	0.21	2.6	3.0	6.6
	WW CR _{ggF}	5.3	18	1.1	6.3	4.0	3.2	20
	Top CR _{VBF}	8.2	3.5	10	1.5	1.3	3.7	14
	WW CR _{VBF1J}	9.9	8.3	9.4	3.9	5.3	2.7	18
WW								
	Source	Jet	Pile-up	ME+PS	$\mu_{ m R}$	Resummation	PDF	Total
	SR _{ggF}	1.2	1.8	2.4	1.7	3.1	2.7	5.5
	SR _{VBF1J}	17	2.8	11	7.3	5.0	2.3	23
	SR _{VBF2J}	18	3.1	38	18	1.4	2.1	47
	WW CR _{ggF}	1.1	1.8	2.6	0.95	2.9	3.6	5.9
	WW CR _{VBF1J}	16	4.5	12	11	2.3	2.8	23

- "Total" includes all systematics (not only the dominant ones in the tables)
- Systematics for signal in backup slides
- Shape uncertainties also considered in the analysis

Yongke Zhao

MT plots in Top CRs

- Backgrounds event yields scaled to the post-fit
- Signals scaled to expected limits in the plots

MT plots in WW CRs

Backgrounds event yields scaled to the post-fit

Signals scaled to expected limits in the plots

MT plots in SRs

Post-fit plots

Signals scaled to expected limits in the plots

Post-fit NFs $NF_{ggF}^{top} = 0.96 \pm 0.05$
 $NF_{ggF}^{WW} = 1.14 \pm 0.09$ $NF_{VBF}^{top} = 1.12 \pm 0.1$
 $NF_{VBF,1J}^{WW} = 1.00 \pm 0.2$ (stat. \bigoplus sys.)

Yongke Zhao

Limits for NWA

Limits [pb]	ggF	VBF
Lowest mass (200 GeV)	6.4	1.3
Highest mass	0.008 (4 TeV)	0.006 (3TeV)

2HDM interpretation

The limits for NWA are further translated to exclusion contours in the 2HDM model for the phase space where NWA is valid

 $m_{\rm H} = 300 \, {\rm GeV}$

Limits for LWA

Interference effects between signals and backgrounds also studied and found to be negligible

Yongke Zhao

Limits for other models

below 750 GeV excluded

below 1.1 TeV excluded

below 1.3 TeV excluded

Yongke Zhao

200 300

ATLAS

Vs = 13 TeV, 36.1 fb

 $X \rightarrow WW \rightarrow ev\mu v$ (VBF, GM)

400

500

600

 $\sigma_{\!X}\times B(X\!\to WW)~[pb]$

10

10-

 10^{-2}

Conclusion

- A search for heavy resonance performed in the $X \rightarrow WW \rightarrow ev\mu v$ decay channels at 13 TeV with Run 2 data at 36.1 fb⁻¹
- Results interpreted by several signal models, e.g. NWA, LWA, 2HDM,
 - HVT, etc., covering a mass range of [200 GeV, 5 TeV]
- No significant excess or evidence of new heavy resonance found
- Upper limits given for different signal models

Thanks for your attention!

BACKUP

Dominant systematics for signals

QCD scale, PDF and PS uncertainties on signal acceptance

- The uncertainties have some dependences on the masses
- Only overall results shown below
- PS shower tune uncertainties also evaluated, but the the PS shower model uncertainties are significantly larger

ggF induced signals	Sources(%)	ggF SR	VBF 1J SR	VBF 2J SR
	Scale	-	-	0.2 ~ 2.5
	PDF	< 0.4	< 1.5	< 1.6
	PS model	1.3 ~ 3.1	13 ~ 28	2.3 ~ <mark>15</mark>
VBF induced				
VBF induced	Sources(%)	ggF SR	VBF 1J SR	VBF 2J SR
VBF induced signals	Sources(%) Scale	ggF SR 0.9 ~ 2.8	VBF 1J SR 1.9 ~ 3.6	VBF 2J SR 1.0 ~ 7.3
VBF induced signals	Scale PDF	ggF SR 0.9 ~ 2.8 < 1.7	VBF 1J SR 1.9 ~ 3.6 < 1.2	VBF 2J SR 1.0 ~ 7.3 < 1.5

QCD scale uncertainties on event category migration

• 3% - 10% for ggF SR, 4% - 30% (30% - 60%) for VBF 1J (2J) SRs

Limits extension for NWA

Limits on " σ_{total} (ggF + VBF) * BR", as a function of " σ_{ggF} / σ_{total} "

Yongke Zhao

2HDM interpretation

Figure 8: Exclusion contours at 95% CL in the plane of tan β and m_H for Type I (left) and Type II (right) 2HDM signals with $\cos(\beta - \alpha) = -0.1$. The inner and outer bands show the $\pm 1\sigma$ and $\pm 2\sigma$ ranges around the expected limit and the hatched regions are excluded. The other heavy Higgs boson states A and H^{\pm} are assumed to have the same mass as H.

Limits for other models

Figure 10: Upper limits at 95% CL on the resonance production cross section times branching fraction $\sigma_X \times B(X \rightarrow WW)$ (left) and on $\sin \theta_H$ (right) in the $ev\mu v$ channel, for a GM signal. The inner and outer bands show the $\pm 1\sigma$ and $\pm 2\sigma$ ranges around the expected limit. The full curves without dots correspond to the predicted theoretical cross section and the model parameter used in the benchmark model, respectively.

Event yields in ggF regions

Post-fit event yields

Numbers are rounded by PDG rules

	SR _{ggF}	Top CR _{ggF}	WW CR _{ggF}
WW	11500 ± 800	820 ± 120	3360 ± 220
Top quark	11800 ± 600	52550 ± 330	2610 ± 180
Z/γ^*	1420 ± 110	111 ± 20	20.9 ± 2.0
W+jets	1180 ± 320	710 ± 190	280 ± 70
VV	866 ± 34	101 ± 12	250 ± 11
Background	26740 ± 170	54290 ± 250	6510 ± 80
Data	26739	54 295	6515

Uncertainties including both statistical and systematic uncertainties Good agreement found between data and backgrounds

Post-fit event yields

Numbers are rounded by PDG rules

	SR _{VBF1J}	SR _{VBF2J}	Top CR _{VBF}	WW CR _{VBF1J}
WW	390 ± 50	120 ± 26	61 ± 11	265 ± 32
Top quark	450 ± 50	391 ± 24	5650 ± 90	167 ± 18
Z/γ^*	45 ± 11	24 ± 6	68 ± 19	74 ± 12
W+jets	52 ± 13	8.9 ± 2.5	91 ± 24	43 ± 11
VV	32 ± 7	16.6 ± 1.9	20 ± 9	38 ± 4
Background	972 ± 29	563 ± 22	5890 ± 80	596 ± 22
Data	978	560	5 889	594

Uncertainties including both statistical and systematic uncertainties Good agreement found between data and backgrounds

Event selection

Event selection

MC corrections

All corrections to MC samples that considered in the analysis are shown below:

- top leading lepton pt (in-situ) reweighting in ggF SR and CRs
- qq→WW Sherpa-to-Matrix correction applied in ggF SR and
 WW CR
- $gg \rightarrow WW NLO k$ -factor: 1.7 (60% uncertainty quoted)
- ggF NWA signal Powheg-to-MadGraph reweighting in VBF SRs

More details in backup slides

Top leading lepton pt reweighting

The reweighting was applied only for ggF category

Before reweighting

After reweighting

$m_{\rm T}$ in ggF Top CR

All other distributions also checked and found to have better agreement between data and MC after reweighting

Yongke Zhao

WW Sherpa-to-Matrix correction

- Sherpa 2.2.1 (currently used) $qq \rightarrow WW$ is not fully a NLO sample
- A reweighting to Matrix NNLO calculation + NLO EW correction is applied to improve the prediction
 - \succ fit performed only in the bulk m_T range
- The total uncertainty on the correction considered to be the 100% of the correction (±50% assigned for up and down)

W+jets estimation

Using data-driven method based on "fake-factor" (FF), same as SM HWW coupling analysis. Fake-factors derived using di-jets samples.

$$V_{id+id}^{W+jets} = N_{id+anti-id}^{W+jets} \times FF$$

= $(N_{id+anti-id} - N_{id+anti-id}^{EW}) \times \frac{N_{id}}{N_{anti-id}}$

FFs are dependent on lepton flavour, pt and eta. FFs shown below as an example

Ι