#### Search for a heavy scalar boson decaying into a pair of Z bosons in the 2/2v final state in CMS



#### Hanwen Wang Beihang University

# Outline

- Introduction
- Overview
- Analysis Strategy
  - Event selection
  - Category
  - Backgrounds estimation
  - Results
- Conclusion

### Introduction

- A generic heavy scalar boson search with ZZ→212∨ final state, but test with EWS
  - Electroweak Singlet Model (EWS): additional heavy Higgs
- □ Why 2l2v is promising?
- New physics manifest itself in a change of the transverse mass (or MET) spectrum
- ZZ→2l2v search channel a promising channel for heavy resonance search:
  - BR(  $ZZ \rightarrow 2l2\nu$ ) ~ 6 BR(  $ZZ \rightarrow 4l$ )
  - reduced background in High  $M_{ZZ}$ compared to  $ZZ \rightarrow 212q$
  - Not sensitive to the width of heavy scalar



#### **Signal and Backgrounds**



#### **SM-like heavy higgs**



### **Signal and Backgrounds**

Backgrounds



Single top, WW, WWW



#### **Event Category**



# **Object and Event selection**

- Trigger: single lepton or di-lepton trigger
- Offline Electron/Muon selection:
  - $p_T > 25 GeV$
  - $|\eta_e| < 2.5, |\eta_\mu| < 2.4$
  - Tight ID and Isolation
- $p_T^Z > 55 GeV$
- $|m_{ll} 91| < 15 \, {\rm GeV}$
- 3rd lepton veto
- $\Delta \Phi(\text{jet}, \text{MET}) > 0.5$
- $\Delta \Phi(Z/\gamma, MET) > 0.5$
- MET > 125GeV
- Transverse Mass distribution is used to set shape based limits

### **Event cut flow**



#### All Background estimated with MC samples as first check All jet categories summed up

### Irreducible Backgrounds

- Diboson/Triboson: ZZ, WZ, ZVV with Z decaying into lepton pairs
- Similar topology as signal  $H \rightarrow ZZ \rightarrow 2l2v$ , Estimated with MC prediction
- $qq \rightarrow ZZ$ , apply the following corrections:
  - EWK(NLO/LO) as a function of the quark flavor and Mandelstam variables
  - QCD (NNLO/NLO) corrections are computed as a function of  $M_{zz}$
- gg→ZZ: QCD(NNLO/NLO) k-factors applied, as like signal
- WZ: No EWK corrections applied (assign 3% uncertainty to cover this)



#### **Non-Resonant backgrounds**

- ttbar, tW, WW, Wjets, ττ: flavour symmetric
- Fully data-driven estimation
  - use Z mass sideband regions to define a  $\alpha$  factor



### **Non-Resonant backgrounds**

11

#### • *α* computed from:

- inclusive jet category ( $\alpha$  is independent of jet category)
- b jet tag events (top enriched region)
- MET > 70 GeV (independent of the MET cut)

• We can also cross check *α*-Method using k-Method

• 
$$k_{ee} = \frac{1}{2} \frac{\epsilon_{ee}}{\epsilon_{e\mu}} = \frac{1}{2} \frac{\epsilon_{e}}{\epsilon_{\mu}} = \frac{1}{2} \sqrt{\frac{N_{ee}^{\text{peak}}}{N_{\mu\mu}^{\text{peak}\prime}}} \text{ similarly } k_{\mu\mu} = \frac{1}{2} \sqrt{\frac{N_{\mu\mu}^{\text{peak}}}{N_{ee}^{\text{peak}\prime}}}$$

•  $\alpha$  and k give the same results

• Systematic uncertainties are computed via MC closure test

 $\bullet The systematic of this procedure is found to be <math display="inline">13\%$ 



- Data-driven estimate of "fake MET" from Z+jets using a photon Control Region:
  - Simulation does not reliably describe instr. MET especially in the tails
  - Simulation has limited statistics
  - γ+jets and Z+jets events show similar jet activity and thus "fake MET" sources
- Pre-selection cuts applied to both the dilepton and photon samples :
  - γ/Z pT >55GeV
  - No extra leptons and b-tag veto
  - Jet categorization : VBF, 1-jet, and 0-jet

- Genuine MET are modeled by:
  - Dominant: W+ $\gamma \rightarrow l \nu \gamma$ , Z+ $\gamma \rightarrow \nu \nu \gamma$ , Z+Jets  $\rightarrow \nu \nu \gamma$ , W+Jets  $\rightarrow l \nu \gamma$
  - top+ $\gamma$ , Z  $\rightarrow \tau \tau$ , WW, WZ, top
- The above processes are subtracted from  $\gamma$  data using MC CMS AN-16-325



Figure: Decomposition of the  $\gamma$  data in genuine vs instrumental  $E_T^{\text{miss}}$  using the MC truth

#### • Photon + jet and Z + jet events similar in MC (except for the mass) :

Events / GeV

10

10  $10^{3}$ 

10<sup>2</sup>

10

 $10^{2}$ 

 $10^{3}$ 

Transverse momentum [GeV]

Events / GeV

10

10

10

10

 $10^{2}$ 

• Re-weight photon pT to match the dilepton pT distributions in data, separately for each category (0-jet , 1-jet and VBF) : **CMS AN-16-325** 

≥1iets

Events / GeV

107

10

10

 $10^{3}$ 

10 10

 $10^{2}$ 

 $10^{3}$ 

Transverse momentum [GeV]

Transverse momentum [GeV] Weights used to re-weight the photon sample using "bin-by-bin method":

 $10^{3}$ 



• To evaluate the validity of the method, we perform a closure test using simulated γ+jet and DY samples:



The systematics are caculated via MC closure

#### **Systematic Uncertainties**

| Experimental sources                                      |          |
|-----------------------------------------------------------|----------|
| Luminosity                                                | 2.5      |
| $\ell$ trigger and selection efficiency                   | 6–8      |
| $\ell$ mom./energy scale                                  | 0.01–0.3 |
| $\ell$ resolution (*)                                     | 20       |
| JES, JER, $E_{\rm T}^{\rm miss}$ (*)                      | 1–30     |
| b-tag/mistag                                              | 2–4      |
| Background estimates                                      |          |
| Z+jets                                                    | 20–50    |
| Top, WW                                                   | 10       |
| $WZ, W\gamma^*$                                           | 15       |
| Theoretical sources                                       |          |
| QCD scales                                                | 5–10     |
| PDF set                                                   | 1–4      |
| EW corrections (q $ar{	ext{q}}  ightarrow 	ext{ZZ}$ ) (*) | 2        |
| NNLO (ggZZ) K factor                                      | 10       |

#### CMS PAS HIG-17-012

# **Final Yields**

#### CMS AN-16-325

| channel                                                             | Inc.                                                                                                                                                                                                   | $\mu\mu = 0$ jets                                                                                                                                                                                 | $\mu\mu \geq 1$ jets                                                                                                                                                                      | μμvbf                                                                                                                                                                                                | ee = 0jets                                                                                                                                                                            | $ee \ge 1 jets$                                                                                                                                                                                 | <i>eevbf</i>                                                                                                                                                                                                          |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZZ                                                                  | $332.8 \pm 1.0 ^{+13.7}_{-13.6}$                                                                                                                                                                       | $113.2 \pm 0.6^{+9.0}_{-8.4}$                                                                                                                                                                     | $94.9 \pm 0.5^{+8.0}_{-7.7}$                                                                                                                                                              | $1.27 \pm 0.06 ^{+0.51}_{-0.35}$                                                                                                                                                                     | $67.4 \pm 0.4 \substack{+4.9 \\ -5.6}$                                                                                                                                                | $55.3 \pm 0.4^{+4.4}_{-4.9}$                                                                                                                                                                    | $0.74 \pm 0.04 ^{+0.22}_{-0.22}$                                                                                                                                                                                      |
| WZ                                                                  | $176.5 \pm 4.0^{+5.9}_{-5.4}$                                                                                                                                                                          | $39.1 \pm 1.9^{+3.0}_{-2.5}$                                                                                                                                                                      | $69.6 \pm 2.5^{+3.8}_{-4.0}$                                                                                                                                                              | $1.5 \pm 0.3^{+0.7}_{-0.1}$                                                                                                                                                                          | $22.0 \pm 1.4^{+1.5}_{-1.2}$                                                                                                                                                          | $43.5 \pm 2.0^{+3.0}_{-2.3}$                                                                                                                                                                    | $0.86 \pm 0.24^{+0.35}_{-0.09}$                                                                                                                                                                                       |
| ZVV                                                                 | $6.8 \pm 0.4^{+2.1}_{-2.0}$                                                                                                                                                                            | $0.45 \pm 0.10 \substack{+0.20 \\ -0.20}$                                                                                                                                                         | $3.8 \pm 0.3^{+1.8}_{-1.8}$                                                                                                                                                               | $0.06 \pm 0.03 \substack{+0.03 \\ -0.03}$                                                                                                                                                            | $0.22 \pm 0.05 \substack{+0.06 \\ -0.09}$                                                                                                                                             | $2.1 \pm 0.2^{+1.0}_{-1.0}$                                                                                                                                                                     | $0.04 \pm 0.03 \substack{+0.05 \\ -0.06}$                                                                                                                                                                             |
| Instr. MET                                                          | $123.0 \pm 0.0 ^{+25.2}_{-18.4}$                                                                                                                                                                       | $38.0 \pm 0.0^{+17.6}_{-11.9}$                                                                                                                                                                    | $38.0 \pm 0.0^{+12.8}_{-10.7}$                                                                                                                                                            | $3.44 \pm 0.00 \substack{+0.39 \\ -0.04}$                                                                                                                                                            | $21.2 \pm 0.0^{+9.9}_{-6.8}$                                                                                                                                                          | $20.7 \pm 0.0^{+8.0}_{-6.2}$                                                                                                                                                                    | $1.73 \pm 0.00 \substack{+0.20 \\ -0.02}$                                                                                                                                                                             |
| Top/W/WW                                                            | $313.5 \pm 13.3 \pm 27.0$                                                                                                                                                                              | $18.4 \pm 3.5 \pm 2.4$                                                                                                                                                                            | $181.7 \pm 11.2 \pm 23.6$                                                                                                                                                                 | $3.4 \pm 0.7 \pm 0.4$                                                                                                                                                                                | $10.0 \pm 1.9 \pm 1.3$                                                                                                                                                                | $98.2 \pm 6.0 \pm 1\overline{2.8}$                                                                                                                                                              | $1.8 \pm 0.4 \pm 0.2$                                                                                                                                                                                                 |
| total                                                               | $952.7 \pm 18.2^{+39.4}_{-35.4}$                                                                                                                                                                       | $209.2 \pm 6.9^{+20.0}_{-14.8}$                                                                                                                                                                   | $388.0 \pm 14.2^{+28.0}_{-27.1}$                                                                                                                                                          | $9.7 \pm 1.7^{+0.8}_{-0.6}$                                                                                                                                                                          | $120.8 \pm 3.9^{+11.1}_{-8.9}$                                                                                                                                                        | $219.8 \pm 7.9^{+15.7}_{-15.0}$                                                                                                                                                                 | $5.2 \pm 0.9^{+0.4}_{-0.3}$                                                                                                                                                                                           |
|                                                                     |                                                                                                                                                                                                        |                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                                                       |                                                                                                                                                                                                 |                                                                                                                                                                                                                       |
| data                                                                | 938                                                                                                                                                                                                    | 194                                                                                                                                                                                               | 405                                                                                                                                                                                       | 11                                                                                                                                                                                                   | 115                                                                                                                                                                                   | 209                                                                                                                                                                                             | 4                                                                                                                                                                                                                     |
| data<br>ggH(800)                                                    | $938 \\ (212.2 \pm 6.9^{+4.4}_{-7.5}) \times 10^{1}$                                                                                                                                                   | $\frac{194}{561.9\pm36.0^{+20.4}_{-52.9}}$                                                                                                                                                        | $\frac{405}{697.0\pm40.5^{+16.9}_{-39.7}}$                                                                                                                                                | $\frac{11}{21.3\pm3.8^{+8.1}_{-3.6}}$                                                                                                                                                                | $\frac{115}{349.6 \pm 24.3^{+26.4}_{-25.3}}$                                                                                                                                          | $\frac{209}{478.2 \pm 34.5 \substack{+21.5 \\ -25.3}}$                                                                                                                                          | $\frac{4}{14.2\pm2.2^{+2.8}_{-3.3}}$                                                                                                                                                                                  |
| data<br>ggH(800)<br>qqH(800)                                        | $938 (212.2 \pm 6.9^{+4.4}_{-7.5}) \times 10^{1} 36.7 \pm 0.2^{+0.9}_{-1.0}$                                                                                                                           |                                                                                                                                                                                                   | $\begin{array}{r} 405\\ 697.0\pm 40.5^{+16.9}_{-39.7}\\ 11.71\pm 0.09^{+0.39}_{-0.33}\end{array}$                                                                                         | $ \begin{array}{c} 11 \\ 21.3 \pm 3.8 \substack{+8.1 \\ -3.6} \\ 7.84 \pm 0.07 \substack{+0.46 \\ -0.51} \end{array} $                                                                               | $\begin{array}{r} 115\\ 349.6 \pm 24.3 \substack{+26.4 \\ -25.3}\\ 1.64 \pm 0.03 \substack{+0.25 \\ -0.31}\end{array}$                                                                | $\begin{array}{r} \textbf{209} \\ 478.2 \pm 34.5 \substack{+21.5 \\ -25.3} \\ 7.85 \pm 0.07 \substack{+0.26 \\ -0.28} \end{array}$                                                              | $\begin{array}{r} 4\\ 14.2\pm2.2\substack{+2.8\\-3.3}\\ 5.26\pm0.06\substack{+0.32\\-0.40}\end{array}$                                                                                                                |
| data<br>ggH(800)<br>qqH(800)<br>ggH(1000)                           | $938 (212.2 \pm 6.9^{+4.4}_{-7.5}) \times 10^{1} 36.7 \pm 0.2^{+0.9}_{-1.0} (168.2 \pm 3.7^{+3.4}_{-4.9}) \times 10^{1}$                                                                               | $\begin{array}{r} 194 \\ \hline 561.9 \pm 36.0^{+20.4}_{-52.9} \\ 2.40 \pm 0.04 ^{+0.36}_{-0.47} \\ 408.6 \pm 17.8 ^{+22.7}_{-30.5} \end{array}$                                                  | $\begin{array}{r} 405\\ 697.0\pm 40.5^{+16.9}_{-39.7}\\ 11.71\pm 0.09^{+0.39}_{-0.33}\\ 581.3\pm 21.8^{+14.0}_{-26.0}\end{array}$                                                         | $ \begin{array}{c} 11 \\ \hline 21.3 \pm 3.8^{+8.1}_{-3.6} \\ 7.84 \pm 0.07^{+0.46}_{-0.51} \\ 23.5 \pm 4.3^{+1.2}_{-3.9} \end{array} $                                                              | $\begin{array}{r} 115\\ 349.6\pm24.3^{+26.4}_{-25.3}\\ 1.64\pm0.03^{+0.25}_{-0.31}\\ 254.6\pm14.2^{+16.5}_{-22.2}\end{array}$                                                         | $\begin{array}{r} 209\\ \hline 478.2 \pm 34.5^{+21.5}_{-25.3}\\ 7.85 \pm 0.07^{+0.26}_{-0.28}\\ 399.0 \pm 17.9^{+13.0}_{-17.2} \end{array}$                                                     | $\begin{array}{r} 4\\ 14.2\pm2.2\substack{+2.8\\-3.3}\\ 5.26\pm0.06\substack{+0.32\\-0.40}\\ 14.5\pm2.8\substack{+4.6\\-1.7}\end{array}$                                                                              |
| data<br>ggH(800)<br>qqH(800)<br>ggH(1000)<br>qqH(1000)              | $938 (212.2 \pm 6.9^{+4.4}_{-7.5}) \times 10^{1} 36.7 \pm 0.2^{+0.9}_{-1.0} (168.2 \pm 3.7^{+3.4}_{-4.9}) \times 10^{1} 49.6 \pm 0.2^{+1.2}_{-1.3}$                                                    | $\begin{array}{r} 194\\ 561.9\pm 36.0^{+20.4}_{-52.9}\\ 2.40\pm 0.04^{+0.36}_{-0.47}\\ 408.6\pm 17.8^{+22.7}_{-30.5}\\ 3.58\pm 0.07^{+0.53}_{-0.67}\end{array}$                                   | $\begin{array}{r} 405\\ 697.0\pm 40.5^{+16.9}_{-39.7}\\ 11.71\pm 0.09^{+0.39}_{-0.33}\\ 581.3\pm 21.8^{+14.0}_{-26.0}\\ 15.3\pm 0.1^{+0.5}_{-0.5}\end{array}$                             | $\begin{array}{c} 11 \\ 21.3 \pm 3.8 \substack{+8.1 \\ -3.6} \\ 7.84 \pm 0.07 \substack{+0.46 \\ -0.51} \\ 23.5 \pm 4.3 \substack{+1.2 \\ -3.9} \\ 10.4 \pm 0.1 \substack{+0.6 \\ -0.7} \end{array}$ | $\begin{array}{r} 115\\ 349.6\pm24.3^{+26.4}_{-25.3}\\ 1.64\pm0.03^{+0.25}_{-0.31}\\ 254.6\pm14.2^{+16.5}_{-22.2}\\ 2.36\pm0.05^{+0.39}_{-0.44} \end{array}$                          | $\begin{array}{r} 209\\ 478.2\pm 34.5^{+21.5}_{-25.3}\\ 7.85\pm 0.07^{+0.26}_{-0.28}\\ 399.0\pm 17.9^{+13.0}_{-17.2}\\ 10.7\pm 0.1^{+0.3}_{-0.4}\end{array}$                                    | $\begin{array}{r} 4\\ 14.2\pm2.2\substack{+2.8\\-3.3}\\ 5.26\pm0.06\substack{+0.32\\-0.40}\\ 14.5\pm2.8\substack{+4.6\\-1.7}\\ 7.25\pm0.09\substack{+0.47\\-0.50}\end{array}$                                         |
| data<br>ggH(800)<br>qqH(800)<br>ggH(1000)<br>qqH(1000)<br>ggH(2500) | $\begin{array}{r} 938\\ (212.2\pm6.9^{+4.4}_{-7.5})\times10^{1}\\ 36.7\pm0.2^{+0.9}_{-1.0}\\ (168.2\pm3.7^{+3.4}_{-4.9})\times10^{1}\\ 49.6\pm0.2^{+1.2}_{-1.3}\\ 46.0\pm1.7^{+1.0}_{-0.8}\end{array}$ | $\begin{array}{r} 194\\ \hline 561.9\pm 36.0^{+20.4}_{-52.9}\\ 2.40\pm 0.04^{+0.36}_{-0.47}\\ 408.6\pm 17.8^{+22.7}_{-30.5}\\ 3.58\pm 0.07^{+0.53}_{-0.67}\\ 7.6\pm 0.7^{+0.6}_{-0.2}\end{array}$ | $\begin{array}{r} 405\\ 697.0\pm 40.5^{+16.9}_{-3.97}\\ 11.71\pm 0.09^{+0.39}_{-0.33}\\ 581.3\pm 21.8^{+14.0}_{-26.0}\\ 15.3\pm 0.1^{+0.5}_{-0.5}\\ 16.9\pm 0.9^{+0.3}_{-0.5}\end{array}$ | $\begin{array}{c} 11\\ \hline 21.3\pm3.8^{+8.1}_{-3.6}\\ 7.84\pm0.07^{+0.46}_{-0.51}\\ 23.5\pm4.3^{+1.2}_{-3.9}\\ 10.4\pm0.1^{+0.6}_{-0.7}\\ 0.98\pm0.22^{+0.24}_{-0.08}\\ \end{array}$              | $\begin{array}{r} 115\\ 349.6\pm24.3^{+26.4}_{-25.3}\\ 1.64\pm0.03^{+0.25}_{-0.31}\\ 254.6\pm14.2^{+16.5}_{-22.2}\\ 2.36\pm0.05^{+0.39}_{-0.44}\\ 6.0\pm0.6^{+0.3}_{-0.4}\end{array}$ | $\begin{array}{r} 209\\ \hline 478.2\pm 34.5^{+21.5}_{-25.3}\\ 7.85\pm 0.07^{+0.26}_{-0.28}\\ 399.0\pm 17.9^{+13.0}_{-17.2}\\ 10.7\pm 0.1^{+0.3}_{-0.4}\\ 13.9\pm 0.9^{+0.6}_{-0.3}\end{array}$ | $\begin{array}{r} 4\\ 14.2\pm2.2\substack{+2.8\\-3.3}\\ 5.26\pm0.06\substack{+0.32\\-0.40}\\ 14.5\pm2.8\substack{+4.6\\-1.7}\\ 7.25\pm0.09\substack{+0.47\\-0.50}\\ 0.65\pm0.15\substack{+0.09\\-0.10}\\ \end{array}$ |

Apply all the final selection and the data-driven methods.

Signal cross section is scaled to 1pb.

The uncertainties are statistical only except the data-driven bkg(+systematics)

# Final $M_T$ distribution

CMS PAS HIG-17-012

**gg** → (H → )ZZ **qq** → ZZ

-ggF --VBF

Instr. MET

Syst. + Stat.

ZVV

Top/W/WW 🚫 Syst.

signal + interference

(M, Tx)=(800,100) GeV

1500

Top/W/WW 📉 Syst.

signal + interference

(M, Γ)=(800,100) GeV

zvv

2000

 $\bigcirc$  gg  $\rightarrow$  ( H  $\rightarrow$  ) ZZ  $\bigcirc$  qq  $\rightarrow$  ZZ

250

3000

M<sub>T</sub> [GeV]

35.9 fb<sup>-1</sup> (13 TeV)

Instr. MET

Syst. + Stat.

–aaF --VBF

🔶 data

wz

1000

🔶 data

wz

0-jet

1-jet

VBF



1000 1500 2000 2500 3000 M, [GeV] 35.9 fb<sup>-1</sup> (13 TeV) **gg**  $\rightarrow$  (H  $\rightarrow$ ) ZZ **qq**  $\rightarrow$  ZZ 🔶 data zvv Instr. MET wz VBF-tagged Top/W/WW Syst. Syst. + Stat. signal + interference -ggF --VBF (M, Γ<sub>x</sub>)=(800,100) GeV 2500 3000 M, [GeV] 1000 2000 1500 18 μμ

# Limits



Figure: Upper limits at 95% CL set on the ggH (left) and qqH (right) cross section of a scalar boson as function of its mass for various values of width. Note that these are limits on the absolute cross-section.

### Conclusions

- 13TeV data with 35.9 fb<sup>-1</sup> were analyzed.
- No excess found! More stringent limits set on the heavy scalar mass.
- Limits results: generic production of heavy scalar of various width in ggF and VBF
- Analysis with full 2017 data is on-going

## backup

#### **PAS and AN:**

http://cms.cern.ch/iCMS/analysisadmin/cadilin es?id=1876&ancode=HIG-17-012&tp=an&line=HIG-17-012