Search for heavy ZZ resonances in the 4 ℓ and $\ell\ell\nu\nu$ final states with the ATLAS detector

Dr. Marc Bret Cano mcanobre@cern.ch Shanghai Jiao Tong University On behalf of the ATLAS Collaboration

CLHCP 2017 Nanjing, China

December 22, 2017

Dr. Marc Bret Cano

Search for heavy ZZ resonances

December 22, 2017 1 / 27

Introduction: $ZZ \rightarrow 4\ell$

Many useful features:

- Crucial channel for Higgs discovery, can also be used to search for possible high mass Higgs bosons
- Fully reconstructible final state
- *qqZZ* is the main background to this search
- Main draw-back is the small branching ratio (\sim 0.02%) \rightarrow limited statistics

Analysis strategy:

- Use the invariant mass of the four-lepton system $(m_{4\ell})$ as an observable
- Generally hard to distinguish between signal and the continuum ZZ background

Dr. Marc Bret Cano

Introduction: $\ell\ell\nu\nu$

- Not a fully reconstructible final state due to the presence of neutrinos
- More significant backgrounds...
- But larger branching ratio than the 4*l* final state
- The *ℓℓνν* drives the combination from 600 GeV onwards (*ℓ* stands for electrons and muon only)

Analysis strategy:

• Use the tranverse mass of the $\ell\ell\nu\nu$ system

$$m_{\rm T} \equiv \sqrt{\left[\sqrt{m_Z^2 + \left(p_{\rm T}^{\ell\ell}\right)^2 + \sqrt{m_Z^2 + \left(E_{\rm T}^{\rm miss}\right)^2}}\right]^2 - \left|\vec{p}_{\rm T}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

Dr. Marc Bret Cano

Search for heavy ZZ resonances

Introduction: Higgs Production Mechanisms

	ggF	VBF	WH	ZH	bbH	ttH
8 TeV	21.4	1.60	0.70	0.42	0.20	0.13
13 TeV	48.6	3.78	1.37	0.88	0.49	0.51
ratio	2.3	2.4	2.0	2.1	2.5	3.9

- Largely dominated by gluon-gluon fusion
- Vector boson fusion is distinguished by the presence of widely separated jets in the event, but statistics are very limited
- Rest of production mechanisms have an expectation below one event
- Separate between ggF and VBF depending on the jet topology (other production modes are not investigated)

Event Selection

4ℓ:

- Events with four well-isolated leptons fulfilling quality cuts, with the leading lepton $p_T > 20 \text{ GeV}$
- Both Z bosons have to be within the Z mass (both are on-shell)
- Categorize events depending on the leptonic composition (4μ, 4e & 2μ2e)
- Search starts from 200 GeV
- Precise measurement of electron and muon momentum is key

$\ell\ell u u$:

- Look for events with two opposite-charged leptons and a large amount of missing transverse momentum
- Expect the dilepton system and the missing tranverse momentum to be back-to-back in the azimuthal angle, hence require $\delta \phi(p_{T_\ell \ell}, E_T^{miss}) > 2.7$
- $E_{T}^{miss} > 120$ GeV to reduce the contribution from Z+jets background
- Z mass constraint on the ee/ $\mu\mu$ pair
- Search starts from 300 GeV

WARNING

STRANGE PHYSICS AHEAD

ALC SAVELAN MATTER SECOND AND SECOND TO COME.

Dr. Marc Bret Cano

Search for heavy ZZ resonances

December 22, 2017 6 / 27

BSM Higgs & Signal Modelling

Two Higgs Doublet models (2HDM):

- Already used in previous versions of the analysis
- Introduces four additional Higgses, tan β (ratio of vev) and mixing between the two neutral CP states h (SM Higgs) and H
- Four different model types
- Type I : one doublet couples to bosons only, the other to fermions
- Type II : one doublet couples to up-like quarks, the other to down-like
- Type III : same couplings to leptons as in type I and to leptons as in type II
- Type IV : reverse couplings from type III
- Focus on Type I and II models

Dr. Marc Bret Cano

Signal distribution is parametrised for any value of m_H for the 4ℓ final state, while MC simulation is reweighted to any value of m_T for $\ell\ell\nu\nu$, various scenarios considered:

- Narrow Width Approximation
- Large Width Approximation (1, 5 & 10%)

Signal Interference

- Interference effects can be neglected in NWA...
- but in LWA inteference between the SM Higgs mass boson, the ZZ continuum and the heavy scalar H can have effects of 10% on the cross-section
- Samples with interference with the SM background (B) and with the SM Higgs boson (*h*) are generated
- Interference contribution is extracted by subtracting the individual contributions from signal and background-only samples

Background modelling (4ℓ)

- The dominant $q\bar{q} \rightarrow ZZ$ background (about 86%) is estimated through the use of MC simulation with Sherpa
- Normalised to an NNLO cross-section of 1.45 *pb* and parton-showered with Pythia8
- Other minor contributions such as ttW and ggZZ also estimated with MC simulation
- EW Vector-Boson Scattering has a larger contribution for the VBF category due to the presence of jets, making up 16% of the total background

Process	4μ channel	$_{\rm ggF-enriched\ categories}^{\rm ggF-enriched\ categories}_{\rm 2e2\mu\ channel}$	4e channel	VBF-enriched category
ZZ ZZ (EW) $Z + jets/t\bar{t}/WZ$ Other backgrounds	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 193 \pm & 1 & \pm & 25 \\ 1.88 \pm & 0.12 \pm & 0.20 \\ 4.4 \pm & 0.1 & \pm & 0.8 \\ 4.0 \pm & 0.1 & \pm & 0.5 \end{array}$	$\begin{array}{c} 15 \pm 0.1 \pm 6.0 \\ 3.0 \pm 0.1 \pm 2.2 \\ 0.37 \pm 0.01 \pm 0.05 \\ 0.80 \pm 0.02 \pm 0.30 \end{array}$
Total background	$308 \pm 1 \pm 40$	$500 \pm 1 \pm 60$	$203 \pm 1 \pm 25$	$19.5 \pm 0.2 \pm 8.0$
Observed	357	545	256	31

- Reducible backgrounds such as Z+jets are estimated through the use of data-driven methods
- More relevant for electron final states, given that they are more easily faked by light-flavour jets
- Estimated in data control regions with relaxed identification and isolation requirements

Search for heavy ZZ resonances

Background modelling $(\ell\ell\nu\nu)$

- The dominant qq̄ → ZZ background (about 60%) is estimated through the use of MC simulation using Powheg
- Z+jets is estimated through the use of data-driven methods
- Contribution from WZ makes up about 30% of the background in *ℓℓνν* and is estimated through MC simulation corrected in a 3ℓ CR

Process	ggF-enriche e^+e^- channel	d categories $\mu^+\mu^-$ channel	VBF-enriched category
ZZ	$177 \pm 3 \pm 21$	$180 \pm 3 \pm 21$	$2.1 \pm 0.2 \pm 0.7$
WZ	$93 \pm 2 \pm 4$	$99.5 \pm 2.3 \pm 3.2$	$1.29 \pm 0.04 \pm 0.27$
$WW/t\bar{t}/Wt/Z \rightarrow \tau\tau$	$9.2 \pm 2.2 \pm 1.4$	$10.7 \pm 2.5 \pm 0.9$	$0.39 \pm 0.24 \pm 0.26$
Z + jets	$17 \pm 1 \pm 11$	$19 \pm 1 \pm 17$	$0.8 \pm 0.1 \pm 0.5$
Other backgrounds	$1.12\pm0.04\pm0.08$	$1.03\pm0.04\pm0.08$	$0.03\pm0.01\pm0.01$
Total background	$297 \pm 4 \pm 24$	$311 \pm 5 \pm 27$	$4.6 \pm 0.4 \pm 0.9$
Observed	320	352	9

Dr. Marc Bret Cano

Search for heavy ZZ resonances

Results: $m_{4\ell}$

Dr. Marc Bret Cano

Search for heavy ZZ resonances

1 27

Results: m_T

Dr. Marc Bret Cano

Search for heavy ZZ resonances

1400

m_⊤ [GeV]

Results: *p*-value

- Two excesses found in the 4*l* channel: 240 and 705 GeV
- Excess at 240 GeV is driven by an excess in the 4*e* category, while the 705 GeV one appears in all categories
- Each excess represents a 2.2σ global significance
- Excess not found in the $\ell\ell\nu\nu$ channel, which is more sensitive

Results: NWA ggF & VBF 95% CL

Dr. Marc Bret Cano

Search for heavy ZZ resonances

December 22, 2017 14 / 27

Results: LWA 5 & 10% 95% CL

2HDM exclusion contour $tan(\beta)$ vs $cos(\beta - \alpha) m_H = 200$ GeV

2HDM Exclusion Contour $tan(\beta)$ vs $m_H cos(\beta - \alpha) = -0.1$

95% CL Spin-2 Kaluza-Klein Graviton

Dr. Marc Bret Cano

Search for heavy ZZ resonances

ecember 22, 2017 18 / 27

Conclusions

- Search for heavy ZZ resonances presented
- Still fairly limited by statistics in the 4ℓ channel
- But we have had a glorious year of data collection! And there is more to come
- So far all compatible with SM expectation but aim to have updates on the 4ℓ excesses as soon as possible
- For further details, the paper can be found in: https://arxiv.org/pdf/1712.06386.pdf

Performance of the LHC

- The LHC has been working remarkably well
- The ATLAS Experiment has exceeded the data collected in 2016

Search for heavy ZZ resonances

BACKUP SLIDES

Dr. Marc Bret Cano

Search for heavy ZZ resonances

December 22, 2017 21 / 27

Muon calibrations

- Track reconstructed combining information from Inner Detector and muon chamber hits
- Correct momentum resolution and scale in simulation to account for differences with data:
 - Misalignements in the detector
 - Simulation of the traversed material
 - Magnetic field
- Very precise knowledge of the muon momentum resolution and scale in the Higgs mass range
- Approximately 10% muon momentum resolution in the 1 TeV range

December 22, 2017 22 / 27

Electron corrections

- Corrects the response at reco cluster in the simulation with an MVA and corrections from $Z/J/\psi$ analysis
- Correct simulation for energy loss in inactive materials

Dr. Marc Bret Cano

Four electron event with $m_{4\ell} = 124.6 \text{ GeV}$

Dr. Marc Bret Cano

Search for heavy ZZ resonances

December 22, 2017 24 / 27

Signal acceptance & systematics

Mass	Production mode	$\frac{ggF}{4\mu}$ channel	-enriched catego: $2e2\mu$ channel	ries 4e channel	VBF-enriched category
300 GeV	$_{ m VBF}^{ m ggF}$	56% 36%	48% 30%	40% 24%	1% 21%
600 GeV	$_{ m VBF}^{ m ggF}$	64% 36%	56% 34%	48% 32%	3% 26%

- Low acceptance for VBF process due to the stringent requirements
- Any event not classified as VBF enters the ggF category
- The contribution from final states with τ leptons decaying to electrons or muons is found to be negligible

Mass	Production mode	$_{\mu}+_{\mu}{\text{channel}}^{\text{ggF-enriched}}$	e^+e^- channel	VBF-enriched category
$300 {\rm GeV}$	ggF VBF	6% 2.6%	5% 2.4%	<0.05% 0.7%
600 GeV	ggF VBF	$rac{44\%}{27\%}$	44% 27%	1% 13%

• The uncertainty on the integrated luminosity enters both in the normalisation of the fitted number of signal events as well as in the background expectation from simulation

ggF production		VBF production				
Systematic source Impa	ct [%]	Systematic source In	apact [%]			
	7	$n_H = 300 \text{ GeV}$				
Luminosity	4	Parton showering	9			
Z +jets modeling $(\ell^+ \ell^- \nu \bar{\nu})$	3.3	Jet energy scale	4			
Parton showering	3.2	Luminosity	4			
$e\mu$ statistical uncertainty $\ell^+\ell^-\nu\bar{\nu}$	3.2	$q\bar{q} \rightarrow ZZ$ QCD scale (VBF-enriched categor	y) 4			
$m_H = 600 \text{ GeV}$						
Luminosity	6	Parton showering	6			
Pileup reweighting	5	Pileup reweighting	6			
Z +jets modeling $(\ell^+ \ell^- \nu \bar{\nu})$	- 4	Jet energy scale	6			
QCD scale of $q\bar{q} \rightarrow ZZ$	3.1	Luminosity	4			
$m_H = 1000 \text{ GeV}$						
Luminosity	4	Parton showering	6			
QCD scale of $gg \rightarrow ZZ$	2.3	Jet energy scale	5			
Jet vertex tagger	1.9	Z +jets modeling $(\ell^+ \ell^- \nu \bar{\nu})$	4			
Z +jets modeling $(\ell^+ \ell^- \nu \bar{\nu})$	1.8	Luminosity	4			

Dr. Marc Bret Cano

Search for heavy ZZ resonances

Results: ggF Fraction vs mH Limit

Dr. Marc Bret Cano

Search for heavy ZZ resonances

December 22, 2017 26 / 27

Background modelling $(\ell\ell\nu\nu)$

- Contribution from WZ is estimated with the use of data-driven corrections factors applied on simulation
- The correction factor is extracted as the ratio of data to simulated events in a WZ-enriched region with 3ℓ
- Control region built looking at $Z \to \ell \ell$ events with an additional lepton
- Contributions from other SM processes in the control region are subtracted using MC simulation
- The correction factor derived is found to be 1.29±0.09

Dr. Marc Bret Cano

December 22, 2017 27 / 27