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Motivation
● One of the biggest challenges in 

Run II LHC: extract rare and novel 
signal events from a large number 
of background events

Model-dependent approach
● theoretical assumption as a starting 

point
● probability distribution as 

discriminator among different theory 
model (hypothesis)

● exploit and provide  more information
● MultiVariate Analysis (MVA) 

techniques, e.g. neural networks or 
boosted decision trees

● Matrix Element Method (MEM) 
BDT in CMS-SMP-17-004

Deep Neural Network for b tagging
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Introduction

● Matrix Element Method (MEM) is a powerful experimental 
technique widely employed to maximize the amount of 
information that can be extracted from a collider dataset

– the matrix element contains the maximal amount 
of theoretical information available

– use the measured particles’ momenta as direct 
input to the evaluation of the matrix element 

● For each event, the MEM compute a weight quantifying 
the probability that it arises from a given theory model

● Then the most probable hypothesis can be obtained 
through a likelihood maximization method

● Especially useful when the expected experimental 
signatures involve a complex final state, or has a topology 
not fully reconstructed at detector level
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Description of the method

● The goal of the MEM is to perform a measurement 
using the matrix element to create a probability 
function

● MEM weight: conditional probability P(x|α)
– Experimentally quantities: x
– Theoretical information: α 
– Parton-level configuration: y

– The evolution of y into x (transfer function): 
W(x,y)
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Description of the method

● The parton-level probability P
α
(y) can be expressed as a 

product of 

– the squared matrix element |M
α
|2(y),

– the parton distribution functions f
1
(q

1
) and f

2
(q

2
) 

– the phase-space measure dΦ(y)

● The normalization by the total cross section σ
α
 ensures 

that P(x|α) is a probability density
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Transfer functions
● One assumptions: the transfer functions are 

“factorisable”
– can be written as the product of single-particle 

resolution functions

● Transfer functions could be parameterized from MC 
simulation

● Match reconstructed objects with partons stored by the 
generator history information, e.g. within a ΔR range
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MEM Setup

Transfer functions
Evaluated in MC

Squared matrix element
MadGraph C++ standalone

Parton distribution function
LHAPDF interface
NNPDF2.3 LO

Integration:
VEGAS in ROOT

Element of phase space corresponding 
to unmeasured quantities

MEM weight

Enforcing 4-momentum 
conservation

Advantages
● Makes maximal use of both experimental 

information and the theoretical model on an 
event-by-event basis

● Good discrimination vs irreducible background, 
especially for complex final state

Limits
● CPU intensive
● Subject to numerical 

inaccuracies
● Matrix element LO only
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Application of the MEM in 
ttH multilepton analysis

● Standard model Higgs boson in association with a top quark 
pair 

– CMS-PAS-HIG-15-008, CMS-PAS-HIG-16-022, CMS-PAS-
HIG-17-004

– Higgs bosons decays to WW*, ττ, ZZ* (  multileptons)→
– Leptonic decay of at least one of the top quarks

– Hadronic τ vetoed (measured in CMS-PAS-HIG-17-003)

● Main irreducible background: ttV (ttW, ttZ/γ*)

● A BDT classifiers MVA(ttH vs ttV) is trained to improve the 
separation between the signal and background

● Include the likelihood ratio of ttH and ttV from MEM as input of 
the BDT
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Application of the MEM in 
ttH multilepton analysis

● Evaluate MEM weights under ttH, ttW, 
ttZ/γ* hypotheses

● MEM weights is the average weight of 
all possible lepton, jets, b-jets 
permutations

● The likelihood ratio of ttH and ttV 
from MEM as input of the BDT

● Improved discrimination by 10% 
in 3l category in CMS-PAS-HIG-
16-022

● The significant of observation over 3 σ 
in CMS-PAS-HIG-17-004 

– First evidence! Hot topic at 
Moriond 2017

See talk from Na PENG about this analysis:
http://indico.ihep.ac.cn/event/7102/session/7/contribution/30

http://indico.ihep.ac.cn/event/7102/session/7/contribution/30
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MEM as a kinematic fit

● In order to evaluate the weights, a non trivial multi-
dimensional integration of complicated functions 
over the phase space has to be undertaken

● The numerical efficiency (and therefore the speed) 
of such integration is currently a serious limitation

● Instead of integration, look for the kinematic 
configuration having maximum probability

● Caveat : work still ongoing !
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Different minimization 
algorithms

● Easy way to find the maximum:
– Obtained with the highest integrand value tried 

by VEGAS among all iterations of the 
integration

– Repeat for all permutations and select the 
permutation with highest value

● Minimize the MEM function:
-log(f(Φ’)), if f(Φ’) ≠ 0
1000, if f(Φ’) = 0 (this happens when the phase 

space is forbidden by kinematics)
● Difficulties:

– The function is convex by parts: jumps when the 
phase space is forbidden

– Global minimum to be found among many local 
minima
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Comparison of 
Minimizers

● Try several minimization algorithms
– “Max int”: minimum is found during VEGAS 

integration
– “SubGradient”: custom minimization with 

steepest descent, choosing lowest gradient 
between left/right side, to avoid gaps where 
the function is null

– Minuit2: usual Migrad minimization, variable 
metric method heavily using first derivatives

– Simplex: simplex algorithm is adaptative, based 
on barycenters of previous steps, but does not 
use any derivative

– Annealing: simulated annealing from GSL 
algorithm

● Initialization: repeat random initialization of variables for 
each event, until a set is found to get a non null MEM 
value
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Minimization results

● Simplex algorithm is the best 
minimizer: most of the problem is 
solved when tackling the “jumps”

● “Subgradient" almost as good as 
the simplex algorithm: a custom 
algorithm, promising

● Minuit2 reaches more difficulties 
computing derivatives

● “MaxInt” not performing very 
well: can be improved with 
increasing number of VEGAS 
calls, but would increase CPU 
time

● Annealing: to be tuned



14

Conclusion

● The matrix element method is a powerful 
discriminator that makes maximal use of both 
experimental information (x, W(x,y)) and the 
theoretical model (|M

α
|2(y)) on an event-by-event 

basis
● In the measurement of the production of standard 

model Higgs boson in association with a top quark 
pair,  including the likelihood ratio of MEM in the 
classifier could improve the discrimination power by 
10%

● Instead of integration, looking for the kinematic 
configuration having maximum probability could be 
one possible solution

– work still ongoing
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● Assumptions:

– Assume narrow-width for Top quark and Higgs boson

– Treat final-state b from top as massive

– Keep full W and Z propagators in the top ME: follows a 
Breit-Wigner

– Dileptons: Z and γ* contributions included
● Transfer functions

– The lepton energy and its direction is assumed to be 
perfectly measured

– The direction of quarks is assumed to be perfectly 
measured by the direction of the reconstructed jet

– Jets and b-jets energy transfer functions are evaluated 
in MC simulation – histograms parameterized as a 
function of E(rec) /E(gen)
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Sample

● ttZ 3 leptons sample generated with 
MG5_aMC@NLO

– 13 TeV, semi-leptonic top decay

– LO

– Pythia8 for showering

● CMS Detector simulation with Delphes3
– No PU included yet

● Event selection ttZ control region

mailto:MG5_aMC@NLO
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