

Coherent photoproduction in hadronic heavy-ion collisions

Wangmei Zha

University of Science and Technology of China

The Third China LHC Physics Workshop,南京, 南京大学,12月22-24日

https://arxiv.org/pdf/1705.01460.pdf and paper in preparation

Coherent photons as "partons" in heavy-ion collisions

Coherent limitation: $Q^2 \leq 1/R^2 \Rightarrow$ quasi-real ! Photon four momentum: $q^u = (\omega, \ \vec{q}_T, \omega/v)$ $Q^2 = \frac{\omega^2}{\gamma^2} + q_T^2$ $\omega \leq \omega_{max} \sim \frac{\gamma}{R}$ $q_T \leq 1/R$

• View photons as "partons" being present in fast moving ions!

The extent of photons swarming about the ions:

The radius of nuclear matter $R_{Nuc} \sim 6.3$ fm (Au) $R_{photons} >> R_{Nuc}$

Take the photoproduction of ρ (Au+Au 200 GeV)in ultra-peripheral collisions (UPCs) as example: $\langle R_{producton} \rangle \sim 40$ fm

• Every heavy-ion collider also serves as a photon collider!

Coherent photon interactions in heavy-ion collisions

- ✓ UPC conditions: b > 2R_A, no hadronic interactions, both nuclei stay intact with only product at extreme low p_T
- Can this coherent process also exist in hadronic heavy-ion collisions?
- In hadronic collisions, the violent strong interactions would break the nuclei, destroy the coherent condition!

- Significant enhancement of J/ψ yield observed in p_T interval 0 – 0.3 GeV/c for peripheral collisions (50 – 90%).
- Can not be described by hadronic production modified by the hot medium or cold nuclear matter effects!
- Origin from coherent photonnucleus interactions?

The measurements at STAR

Significant enhancement of J/ψ yield observed at p_T interval 0
 – 0.2 GeV/c for peripheral collisions (40 – 80 %)!

No significant difference between Au+Au and U+U collisions.

The excess yield and dN/dt distribution

- Low p_T J/ψ from hadronic production is expected to increase dramatically with N_{part}.
- No significant centrality dependence of the excess yield!

- Similar structure to that in UPC case!
- Indication of interference!
 - ✓ Interference shape from calculation for UPC case PRL 84 2330 (2000)

Similar slope parameter!

- ✓ Slope from STARLIGHT prediction in UPC case - 196 (GeV/c)⁻²
- ✓ Slope w/o the first point: $199 \pm 31(\text{GeV/c})^{-2}$ $\chi^2/NDF = 1.7/2$
- ✓ Slope w/ the first point: $164 \pm 24(\text{GeV/c})^{-2}$ $\chi^2/NDF = 5.9/3$

Calculation strategy

Scenarios for calculations

The shape of spectator is from optical Glauber calculations! Photon emitter Nucleus Nucleus Spectator Spectator TargetNucleus(1)Spectator(2)Nucleus(3)Spectator(4)

Calculations with different scenarios

- Different scenarios have different trend toward central collisions!
- Spectator+Spectator: under predict the data in semi-central collisions.
- To distinguish the different scenarios, measurements at central collisions are needed!

p_T shape with different scenarios

Production versus ϕ (relative to reaction plane)

p_T shape with interference

Dramatically change the p_T spectra!

Different interference pattern in different centrality!

The effect is relative small with spectator coupling!

$\boldsymbol{\phi}$ distribution with interference

Rapidity distribution with interference

Dramatically change the rapidity distribution with nucleus coupling!
Stay unaffected with spectator coupling!

Hint of coherent photon-photon process?

- Significant excess in 60-80% central Au + Au and U + U collisions for the whole invariant mass range!
- Can the excess be described by the coherent photon-photon process?

Calculations for the excess

Describe the data reasonability well! Nucleus coupling for photon emitter

Predictions for isobar collisions

Test initial magnetic field!

Summary

• Excess of J/ψ at very low $p_T!$

✓ Consistent with coherent photonuclear production!

Excess of dielectron at very low p_T!

✓ Consistent with coherent photon-photon production!

CLHCP2017 - 查王妹

Back-up

- Heavy nuclei carry strong electric and magnetic fields
 - Fields are perpendicular -> treat as nearly-real virtual photons
 - $E_{max} = \gamma hc/b$
 - Photonuclear interactions
 - Two-photon interactions
- Visible when $b > 2R_A$, so there are no hadronic interactions;

Energy	AuAu RHIC	pp RHIC	PbPb LHC	pp LHC
Photon energy (target frame)	0.6 TeV	~12 TeV	500 TeV	~5,000 TeV
CM Energy $W_{\gamma p}$	24 GeV	~80 GeV	700 GeV	~3000 GeV
Max γγ Energy	6 GeV	~100 GeV	200 GeV	~1400 GeV

- The energy frontier for electromagnetic probes
 - Maximum CM energy $W_{\gamma p} \sim 3$ TeV for pp at the LHC
 - ~ 10 times higher in energy than HERA
 - Probe parton distributions in proton and heavy-ions down to
 - Bjorken-x down to a few 10⁻⁶ at moderate Q²
- Electromagnetic probes have $\alpha_{\rm EM} \sim 1/137$, so are less affected by multiple interactions than hadronic interactions
 - "Precision" measurements,
 - Exclusive interactions
- Two-photon physics & couplings at the energy frontier
 - New particle searches (axions), $\gamma\gamma$ ->W⁺W⁻, etc.

Vector meson photon-production

✓ Vector meson production: ✓ chargeless 'Pomeron exchange' ✓ Light meson production usually treated via vector meson dominance model: ρ, direct π⁺π⁻, ω.... ✓ Heavy meson production treated with pQCD:

J/ψ, ψ', Y(1S), Y(2S), Y(3S)...

Sensitive to the gluon distribution:

$$\frac{d\sigma(\gamma A \to VA)}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 \left[xG_A(x,Q^2) \right]^2$$

$$x = \frac{M_V e^{\pm y}}{\sqrt{s}} \quad Q^2 = M_V^2 / 4$$

Photon production of vector meson

- Process has large cross-sections
- Produced via colorless 'Pomeron exchange'
 - Require >=2 gluon exchange for color neutrality
 - Gluon ladder

 Light meson production usually treated via vector meson dominance model

 $\Box \rho$, direct $\pi^+\pi^-$, ω , ρ' observed at RHIC

- Heavy meson production treated with pQCD J/ψ , ψ ', Y(1S), Y(2S), and Y(3S) seen at LHC
- Rapidity maps into photon energy

 $-k = M_V/2exp(\pm y)$

- Twofold ambiguity which nucleus emitted the photon?
- Cross-section is convolution of bi-directional photon flux with $\sigma(\gamma A)$
 - Photon flux is understood to < 10%

Consistency check – ALICE UPC data

- \checkmark Both approaches can reasonably describe the data.
- ✓ Our approach is about 10-40% higher than that of STARLIGHT.
- ✓ The Difference grows with pair mass, due to more production contribution at small impact parameters for heavier pair mass.

Consistency check – STAR UPC data

ρ contributions?

t distribution

Both scenarios describe the data reasonably well!

Discussion

Hadronic produced J/ ψ : B-hadron decay Feed-down from χ_c (18%) and ψ (2s)(10% Color Screening Regeneration	 J/ψ from photoproduction: No B-hadron decay No feed-down from χ_c (18%) Color Screening Negligible regeneration 	
	More sensitive to the color screening of direct produced J/ψ ?	
Photoproduction in UPC: Very clean Impact parameter and ∳ dependence NO! ➤ Perspectives:	Photoproduction in hadronic collisions: Not clean Impact parameter and ϕ dependence YES! Test the medium?	

✓ Measurements in more central collisions

 \checkmark p_T shape and ϕ measurement: the target is nucleus or spectator?

- ✓ photon-photon process (π^0 , η , η' , f₂(1270), a₂(1320), $\pi^++\pi^-$, e⁺+e⁻, $\mu^++\mu^-$...): test the photon emitter (spectator or nucleus)
- ✓ Incoherent contribution?

✓ Cold Nuclear Matter and hot medium effects?

The spatial distribution --- Woods-Saxon form

Zr: A=96 Z=40
Ru: A=96 Z=44
$$\rho(r,\theta) = \frac{\rho_0}{1 + \exp\left\{\left[r - R_0 - \beta_2 R_0 Y_2^0(\theta)\right]/a\right\}}$$
Ru $(R_0 = 5.085 \text{ fm})$
Zr $(R_0 = 5.02 \text{ fm})$
empirical formula for R_0
 $R_0 = 1.16A^{\frac{1}{3}}(1 - 1.16A^{-\frac{2}{3}})$
For Zr and Ru: $R_0 = 5.018 \text{ fm}$
 $\rho_0 = 0.16 \text{ fm}^{-3}$
 $a \approx 0.46 \text{ fm}$
 $\beta_2^{\text{Ru}} = 0.158$
 $\beta_2^{\text{Zr}} = 0.08$
Atom. Data Nucl. Data Tabl. 107, 1 (2016)

For simplicity, use the same parameter set for Zr and Ru and assume $\beta_2 = 0$:

 $R_0 = 5.018 \text{ fm}$ $a \approx 0.46 \text{ fm}$ $\rho_0 = 0.16 \text{ fm}^{-3}$

Centrality determination --- optical Glauber

Collision energy: 200 GeV $\sigma_{pp} = 42 \ mb$

Outlook

Photon-nucleus physics: probing the low x parton facility: electron-proton collider future electron-ion collider

Measurements at very low p_T in hadronic A+A collisions

Test the QGP medium