Measurement of away-side jet broadening in Au+Au collisions at 200 GeV in STAR

Kun Jiang (江琨)

University of Science and Technology of China (USTC) (for the STAR collaboration)

Kun Jiang

Energetic partons lose energy due to interactions in the dense medium

- Measurements of medium modifications of jets have so far been obscured by the large anisotropic flow background. Flow shape and amplitude are not precisely known.
- All orders of v_n are possible and need to be subtracted
- We devise a method to subtract flow background using data

- Nuclear k_T effect
- Event averaging of away-side jets deflected by medium flow
- Collective medium excitation by Mach cone shock waves

Two-particle correlation results

P_x: projection of away-side p_T onto trigger axis

 $P_{x}|_{\eta_{1}}^{\eta_{2}} = \sum_{\eta_{1} < \eta < \eta_{2}, |\phi - \phi_{trig}| > \pi/2} p_{T} \cdot \cos(\phi - \phi_{trig}) \cdot \frac{1}{\varepsilon}$

 ϵ : single-particle acceptance \times efficiency

• For each centrality, cut on the left tail of the distribution (fraction of events) to enhance away-side jet population

Kun Jiang

Methodology for two-particle correlations

Trigger particle $|\eta| < 1$

- Select events with a large recoil momentum (P_x) within a given η window (cartoon 0.5< η <1) from a high- p_T trigger particle to enhance away-side jet population
- Analyze di-hadron correlations in close-region and far-region respectively
- Flow contributions to close-region and far-region are equal

```
close-region 2p corr. = flow + near-side jet + away-side jet * fraction_close
far-region 2p corr. = flow + near-side jet + away-side jet * fraction_far
```

Kun Jiang

STAR Au+Au 200 GeV

close-region 2p corr. = flow + near-side jet + away-side jet × fraction_close far-region 2p corr. = flow + near-side jet + away-side jet × fraction_far

- Near-side almost equal as expected
- Flow backgrounds are the same in close-region and far-region, cancelled in their difference
- Quantify the shape by Gaussian fit σ

Away-side jet correlation shape

• The correlation shape is consistent with Gaussian.

Kun Jiang

CLHCP2017, Nanjing, China

'STAR

Away-side jets are modified:

 Moderate to high p_T associated particles: broaden with increasing centrality

 Shape for all p_T more similar in central than in peripheral collisions

The horizontal caps indicate the systematic error

Kun Jiang

Comparison to pp and dAu

PRD 74 (2006) 072002 PRC 73 (2006) 054903 PLB 743 (2015) 333-339

The leftmost 3 sets of data are for PHENIX p+p PHENIX d+Au STAR d+Au Minbias

pp and dAu: No P_x cut is applied. Momentum cuts in the ref. are slightly different

• Peripheral data are consistent with pp/dAu

Kun Jiang

CLHCP2017, Nanjing, China

STAR

Three-particle correlation results

Methodology for three-particle correlations

Suppose an event is composed of: (besides the High-p_T trigger particle T)

- ✓ A: Jets correlated with the trigger (di-jet)
- ✓ f: flow background
- ✓ a: jets uncorrelated with the trigger
- same η-region pairs
- = TAA+TAf+TAa+TfA+Tff+Tfa+TaA+Taf+Taa (signal + combinatorial bkg + bkg jets)
- cross η-region pairs
- = TAf+TAa+TfA+Tff+Tfa+TaA+Taf (combinatorial bkg)
- same η-region pairs cross η-region pairs
- = TAA + Taa (signal + bkg jets)

Two lower p_T associated particles

No P_x cut is applied in 3-p correlations

Background jets in triggered events = jets in min-bias events (no requirement of a trigger, normalized per event)

• Suppose the number of jets is Poisson distributed with an average of λ . the probability to have n jets per event is

$$P_n = \lambda^n e^{-\lambda} / n!$$

The probability of having a trigger particle with (n-1) background jets is $nP_n / \sum_{m=1}^{\infty} mP_m = \lambda^{n-1} e^{-\lambda} / (n-1)! = P_{n-1}$

This is identical to the probability to have (n-1) jets per event for minbias events

- We can construct the jet background Taa by min-bias events w.r.t. a random "trigger" $\boldsymbol{\varphi}$

Three-particle azimuthal correlations

• What's left in three-particle correlations are the short range correlations on both the near side and away side

Kun Jiang

Intra-jet and inter-jet correlation width

Off-diagonal projection: intra-jet correlations ($|\Sigma|$ <0.35) Diagonal projection: inter-jet correlations (0< Δ <0.35)

Kun Jiang

- Away side: inter-jet correlation >> intra-jet correlation \rightarrow significant k_T and/or flow deflection.
- Intra-jet correlation: σ near = away and no centrality dependence → little jet modification?
- Requirement of a trigger ($p_T > 3$ GeV/c) and two associated particles (2 < $p_T < 3$ GeV/c) bias towards unmodified jets?

STAR

- Methods were used to measure away-side jet correlations with clean, robust flow subtraction using data.
- Away-side jets are modified
 - Correlation broadens with centrality except low $\ensuremath{p_{\text{T}}}$
- Three-particle azimuthal correlations
 - Away-side: inter-jet correlations is significantly broader than intra-jet correlations \rightarrow significant k_T and/or flow deflection.
 - Intra-jet correlations: similar between near- and away-side, and no centrality dependence is found. → Little jet-shape modification on the away side?
 - p_T cuts bias towards unmodified jets?

Thank you!

Kun Jiang

Backup slides

Kun Jiang

, STAR

Intra-jet and inter-jet correlations

 $\Sigma = (\Delta \phi_1 + \Delta \phi_2)/2 - \pi$ (away-side) or Off-diagonal projection: intra-jet correlations $\Sigma = (\Delta \phi_1 + \Delta \phi_2)/2$ (near-side) Diagonal projection: inter-jet correlations $\Delta = (\Delta \phi_1 - \Delta \phi_2)/2$ **₹** 0.02 χ² / ndf 34.47 / 27 ס χ^2 / ndf 33.13 / 27 χ^2 / ndf 30.24 / 27 χ² / ndf 31.96 / 27 N 0.0061 ± 0.0002 Ν 0.0061 ± 0.0001 (1/N) dN/(d∑ or c 0.012 0.012 0.012 N 0.0096 ± 0.0003 Ν 0.0069 ± 0.0001 0.1303 ± 0.0024 0.1819 ± 0.0066 0.1214 ± 0.0025 0.3745 ± 0.0118 σ σ ō 0.015 (N/L) 0.013 (N/L) 0.005 ped 0.0007 ± 0.0001 ped 0.0002 ± 0.0000 0.0007 ± 0.0001 ped 0.0003 ± 0.0000 ped Projections of near- Near-side Off-Diag. Proj. Away-side Off-Diag. Proj. Near-side Diag. Proj. Away-side Diag. Proj. 0.01⊢_{(a) 60-80%} 0.01-(b) 60-80% side and away-side STAR preliminary STAR preliminary three-particle correlations along the diagonal Σ 0 0.5 -0.5 0 0.5 -0.5 1.5 within $0 < \Delta < 0.35$ and Σ or Δ Σ or Λ **(**]) dN/(d∑ or d∆) off-diagonal Δ / ndf 27.53 / 27 / ndf 51.43 / 27 ndf 25.69 / 27 χ^2 / ndf 24.37 / 27 0.01 0.0057 ± 0.0004 0.0072 ± 0.0002 0.0044 ± 0.0007 0.0042 ± 0.0002 N Ν Ν Р 0.015 0.2188 ± 0.0184 σ σ 0.1468 ± 0.0046 0.4807 ± 0.0663 0.1442 ± 0.0075 within $|\Sigma| < 0.35$. ped 0.0020 ± 0.0002 ped -0.0006 ± 0.0001 **0.008** ped 0.0019 ± 0.0002 ped -0.0003 ± 0.0001 Zp)/Up (Near-side Off-Diag. Proj. Away-side Off-Diag. Proj. 0.006 Away-side Diag. Proj 0.01 Near-side Diag. Proj (^{,6,1,1},0.005) N/L) (c) 10-40% (d) 10-40% 0.004 (10.002 (10.002) (10.002) STAR preliminary

Kun Jiang

CLHCP2017, Nanjing, China

0.5

0

-1 -0.5

-2 -1.5

-0.002

-2

-1.5

-1 -0.5

2

 Σ or Λ

 Σ or Δ

0

0.5

Intra-jet and inter-jet correlation width: near-side

 Near-side: σ diag > off-diag. → jet axis swing effect? (the trigger and the two associated particles are likely on different sides of the jet axis)

PRL 102 (2009) 052302

The v_2 and v_4 background subtracted three-particle correlations. 12% central Au+Au

Kun Jiang