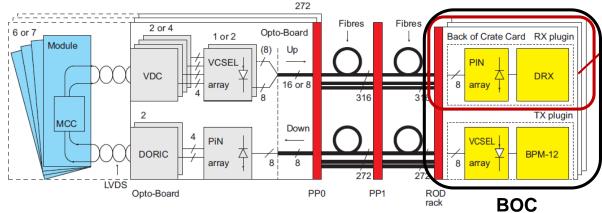


中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences


DRX-II chip for the optical links upgrade of the ATLAS Pixel Detector

Hongbo ZHU for Ying ZHANG CLHCP workshop, 22-24 December, 2017

ATLAS Pixel Detector optical links

Elements and path of the optical link from the MCC to the Pixel DAQ

Rx plugin (optical receiver)

→ To convert the attenuated (due to fiber loss) and distorted (owing to the channel dispersion) light signal into digital data

- Optical readout of the L1/L2 will suffer from bandwidth limitation after LS1
- A wider range of threshold setting will help operations
- Option is to use new BOC for pixel operation
- Commercial optical receivers can NOT cope with NRZ (Non Return to Zero) signal
- Old Rx design has different connector, and old DRX chip is NOT available anymore

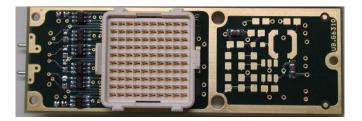
New Rx plugins needed

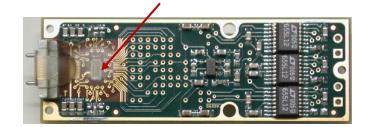
Link occupancy at 75 kHz L1 Trigger						
	μ	B-Layer	Layer 1	Layer 2	Disks	
50 ns	37	39%	34%	52%	30%	
25 ns; 13 TeV	25	35%	31%	48%	27%	
	51	53%	59%	66%	39%	
	76	71%	73%	111%	64%	

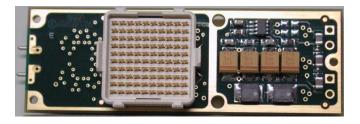
Link occupancy at 100 kHz L1 Trigger					
	μ	B-Layer	Layer 1	Layer 2	Disks
50 ns	37	51%	45%	69%	40%
25 ns; 13 TeV	25	47%	42%	65%	37%
	51	71%	67%	88%	52%
	76	95%	97%	148%	75%

Project requirements

- Should operate with NRZ signals (as in Pixel operations) at 80Mbps
- Have stable operation over a wide range of light power received/input current: from 10 µA up to few mA
- Have independent thresholds for all 12 channels
- Have a BER (Bit error rate) < 10⁻¹¹ after aging
- Should be able to perform a measurement of the input current/light power in order to monitor the stability of the on-detector VCSELS

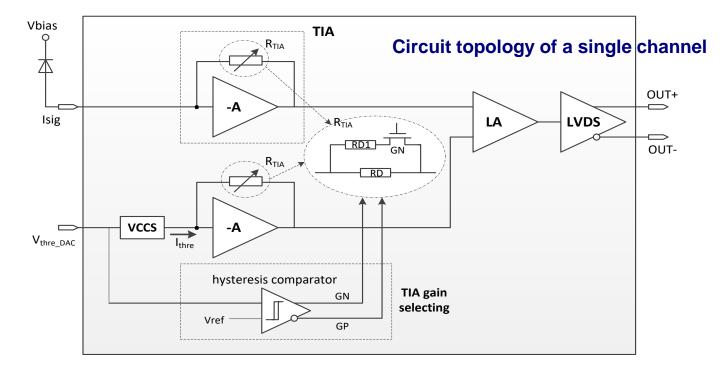

Rx plugin designs


- Two alternative designs developed: sharing the same optical package, mechanical package and dimensions, but with different data receiver solutions
- - **Commercial discrete components** Ŕ
 - Using a pull-up resistor and a discriminator P
 - No amplification applied P
- Discrete solution (P. Lutz, BERN)

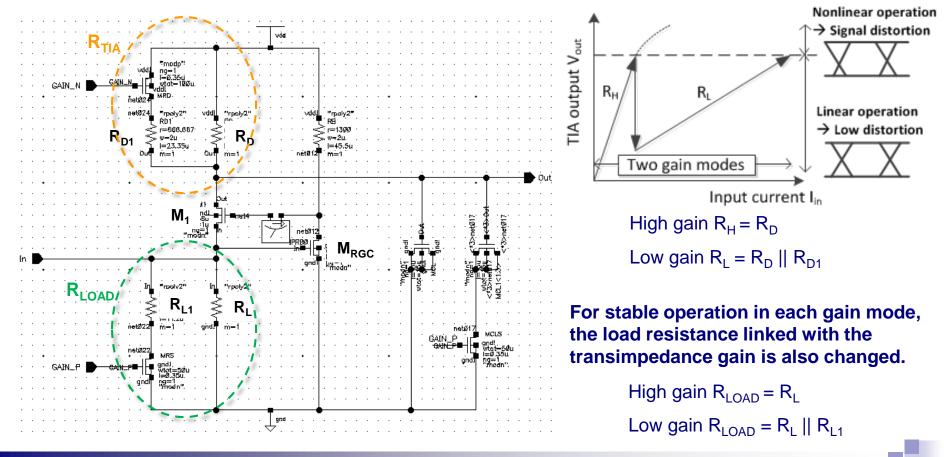

 ASIC solution (Y. ZHANG, IHEP)
 ASIC solution (Y. ZHANG, IHEP)
 - P Full custom design integrated circuit
 - **Two amplification chains** E.

DRX-II chip

Optimized at 80 MHz E.



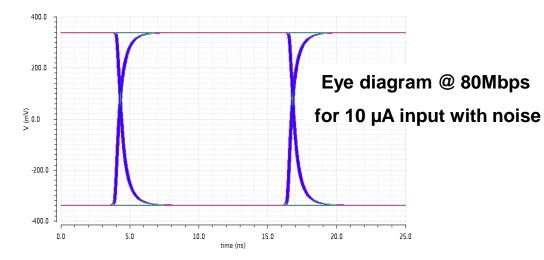
DRX-II chip design (1)


- A single channel consists of two transimpedance amplifiers (TIAs), a voltage-control-currents block (VCCS), a comparator, a limiting amplifier (LA), and an LVDS output driver.
- ➤ A two-gain TIA is proposed to extend the effective dynamic range → good linearity over the complete input current range of 10 µA to 2.4 mA
- > Designed and fabricated in AMS 0.35 µm CMOS process

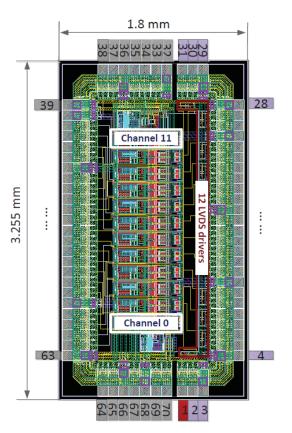
DRX-II chip design (2)

TIA with two gain modes

- **TIA core: RGC (Regulated-Cascode) topology, featuring low input impedance**
- **W** Two alternative transimpedance gain controlled by switched



Ying ZHANG | DRX-II chip for ATLAS Pixel Detector



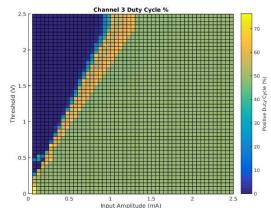
DRX-II chip design (3)

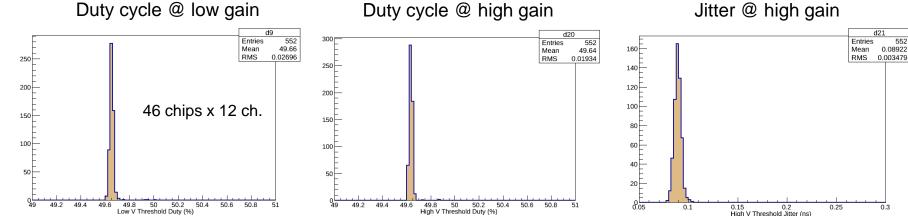
Simulated performance of a single channel:

Symbol	Parameters	Typical value	Unit
VDDA/VDD	Power supply	$3.3\pm10\%$	V
\mathbf{I}_p	Supply current	154 to 178	mA/Chip
R _{LOAD}	Output loading	50	Ω
V_{thr}	Individual threshold voltage	0 to 2.5	V
$V_G S$	TIA gain transition reference voltage	0.45	V
R_T	TIA transimpedance gain	2.5/0.5	kΩ
I _{in}	Linear dynamic input range	10 to 2400	μA
	Data rate	80	Mbps
\mathbf{J}_p	Output jitter peak-to-peak	340	ps

Designed in 2014, using the AMS 0.35 μm CMOS process

CLHCP, Dec. 22-24, 2017

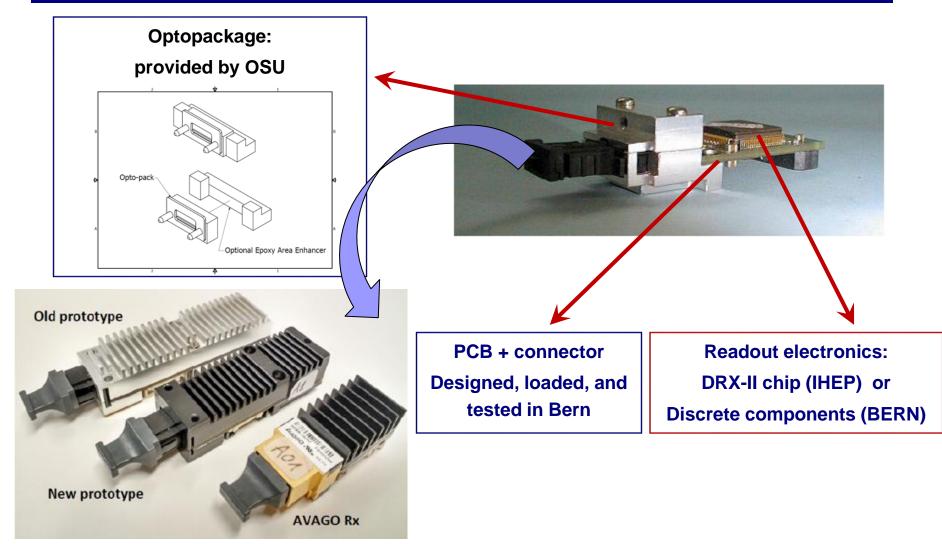

DRX-II chip test


All DRX-II chips tested through a custom probe card, stable performance stable among different chips Work done by Ohio State University

Low V Threshold Duty (%)

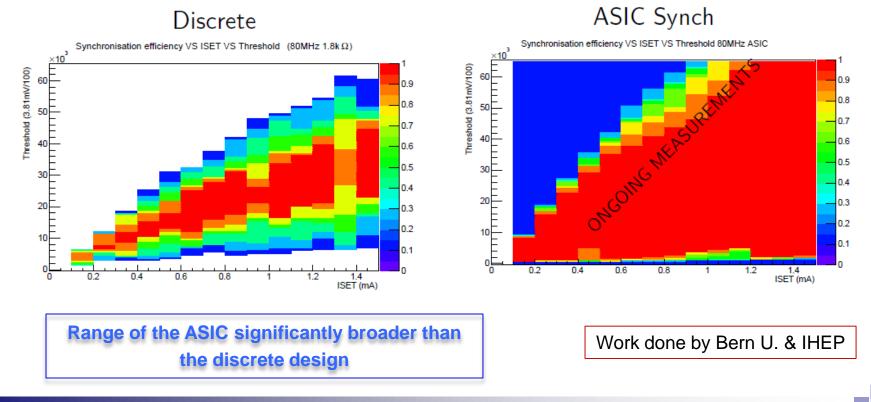
- Pulse generator input •
- Test one channel at a time. with the high/low gain mode; measure supply current, LVDS levels and duty cycles
- Repeat test for all 12 ch.

High V Threshold Duty (%)

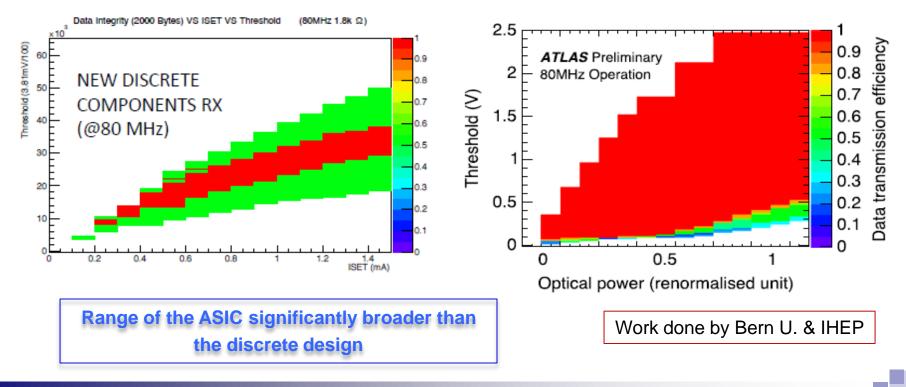

d2:

552

0.08922


Rx plugin prototype

Rx plugin test (1)

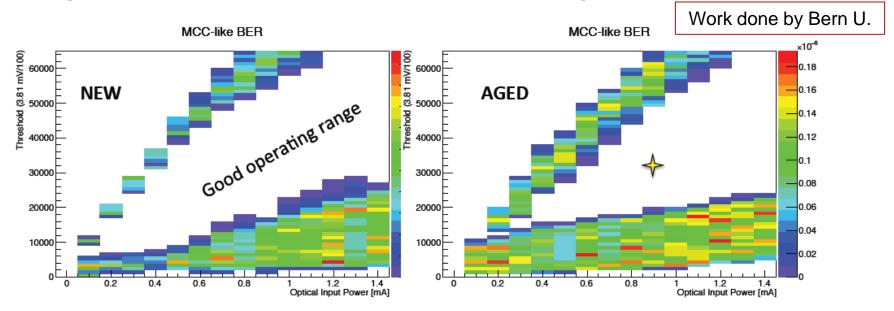

- Synchronization test: the BOC over samples the received signals in order to be able to synch its clock with the incoming signal
- Keep on sending an idle word and trying to synchronize on it, scanning thresholds of the prototype and the optical power of the optoboard
- synchronization efficiency = No. of synchronized channel/No. of total ch.

Rx plugin test (2)

- Data integrity test: in the region where the BOC synchronized, scan sending 10 bytes 8b/10b encoded, including start and end of frame words, 200 times for a total of 2000 bytes
- Data integrity efficiency = No. of working channel/No. of total ch.

Discrete

ASIC


CLHCP, Dec. 22-24, 2017

Ying ZHANG | DRX-II chip for ATLAS Pixel Detector

Rx plugin test (3)

 DRX-II chip has been selected as the baseline design for the L1/L2 upgrade, more functional tests performed during pre-production

All the tested RX are still working after the ageing.

- Plots show the RX operating range (plotting BER as a function of ISET and Rx threshold)
- Left: reference RX operating range
- Right: aged RX operating range

Accelerated aging in climate chamber ~1000 hours@ 80°C 80%rel. humidity Each aged RX has been tested for one point inside the operating range with a test at 10⁻¹²

CLHCP, Dec. 22-24, 2017

Ying ZHANG | DRX-II chip for ATLAS Pixel Detector

12

DRX-II/Rx Installation

 Based on its better performance, DRX-II chip was selected as the baseline design to make the Rx plugins for the Pixel L1/L2 upgrade.

Produced and tested a total (L1+L2) of 280 Rx
Installation
104 Layer 2 SR1 and installation in Sep-Nov 2015
24 Layer 1 SR1 and installation in Sep-Nov 2015

- 128 Layer 1 SR1 in November 2016, pit before Xmas 2016
- More Rx plugins for the coming pixel B-layers & Disk upgrade

	Installed		Still to be installed			
	IBL	Pixel (Ly2+10% Ly1)	Ly1 (90%)	B-Layer	Disk (Disk2 doubled)	Total to be installed (Pit)
ROD	15	32	32	22	16	70
BOC	15	32	32	22	16	70
RX	60	128	128	88	64	280
TX (all pinouts)	30	116	64	44	48	156
QSFP	30	64	64	44	32	140

Table 2: New readout hardware items already installed and still to be installed as of August 2016

Summary

- IHEP designed an ASIC chip (DRX-II) for the optical links upgrade of the ATLAS Pixel Detector (L1/L2).
- DRX-II has met all the required specifications, and offers better performance than the alternative solution based on discrete components.
- DRX-II chip has been used in the new Rx plugins, which have been installed in the Pixel Detector upgraded readout during 2015 to 2016; more to be installed for the coming Pixel B-layer & Disk upgrade.