Production of muons from open heavy-flavor decays in Pb-Pb collisions at 5.02 TeV

Jianhui Zhu for the ALICE Collaboration E-mail: zhujh@mails.ccnu.edu.cn

CLHCP, December 22-24, 2017, Nanjing University, China

Institute of Particle Physics, CCNU, Wuhan, China

CLHCP 2017

Physics motivation

> ALICE detector

Overview in Run I

Analysis strategy

Results in Run II

Summary and outlook

Why open heavy flavour?

- ★ Heavy quarks (charm and beauty) are produced in initial hard scatterings with a short formation time T_f ~ 1/m_{c/b} (~ 0.02-0.1 fm/c) ≪ T_{QGP} (~ 5-10 fm/c)
 ★ Involved in the full evolution of the QCD medium sensitive probes of the medium properties
 ✓ Open heavy flavours in A-A collisions: investigate the hot nuclear matter effects
 - energy loss in the medium via gluon radiation and elastic collisions:
 - > parton color-charge and mass dependence
 - > expected: $\Delta E_g > \Delta e_{u,d,s} > \Delta E_c > \Delta E_b \quad R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$
 - participation in the collective expansion of the system

Observables

- Central-to-peripheral nuclear modification factor:
- Nuclear modification factor:
- Elliptic flow, v₂: CLHCP 2017

$$R_{cp}(p_{T}) = \left\langle T_{AA} \right\rangle_{p} / \left\langle T_{AA} \right\rangle_{c} \times \frac{dN_{AA}^{c}/dp_{T}}{dN_{AA}^{p}/dp_{T}}$$

ALICE

Overview in Run I

• Open heavy-flavour decay muons at forward rapidity versus p_T and rapidity

ALICE measurements are described by pQCD within uncertainties at both energies arXiv:1205.6344

CLHCP 2017

R_{AA} and v_2

- Suppressed by a factor 3 4 in the most central collisions for p_T > 4 GeV/c
- Less suppression in peripheral collisions
- R_{pPb} is consistent with unity within uncertainties
- The suppression observed at high p_T in central Pb-Pb collisions results from final-state effects related to parton energy loss
- \checkmark v₂ is non-compatible with 0 at intermediate p_{T}
- Models reproduce measurement
- BAMPS: transport model with collisional process MC@sHQ+EPOS: collisional and radiative energy loss TAMU: transport model including only collisional processes

- > The inclusion of nPDFs results in a slightly lower value of cross section, especially at forward rapidity
- Both the NLO pQCD calculations with CT10 PDFs and NNLO FEWZ calculations with MSTW2008 PDFs describe the data within uncertainties
- > The smaller cross-section of W⁺ at backward rapidity
- > The cross section divided by the NLO pQCD calculations with nPDFs are shown together with CMS
- > The calculations describe data over the full rapidity interval explored

CLHCP 2017

Analysis Strategy for pp

- **bata sample:** 2015 pp collisions at $\int s = 5.02$ TeV
- Trigger condition: signal in the two VO arrays (MB trigger) with
 - MSL: at least one muon with a low p_T threshold of 0.5 GeV/c
 - / MSH: at least one muon with a high p_T threshold of <u>4.2 GeV/c</u>
- Muon track selection:
 - acceptance & geometrical cuts: select tracks in the acceptance
 - p_T cut at 2 GeV/c: reject μ from secondary π , K
 - track matched with trigger: reject hadrons crossing the absorber
 - pxDCA in 60: reject beam-gas interactions & particles produced in the absorber

- 1. Normalize muon triggered events to the equivalent number of MB events
- 2. Acceptance x efficiency correction:
 - parameterize p_T and η distributions of muons from open HF hadron decays given by FONLL
- 3. Background subtraction:
 - muons from charged K/ π decays
 - extrapolate ALICE measured charged K/ π p_T spectrum at mid-rapidity to forward rapidity
 - muons from J/Ψ decays
 - extrapolate ALICE measured $J/\Psi p_T$ and rapidity at forward rapidity by fits with power-law and pol2, respectively, to take into account fiducial effects
 - muons from W and Z/γ^* decays
 - > estimated using p_T -differential production cross section given by POWHEG simulations with CT10 PDFs
- 4. Systematic uncertainties estimation
- 5. Compare with model calculations

Analysis Strategy for Pb-Pb

♦ Data sample: 2015 Pb-Pb collisions at $\int s_{NN} = 5.02$ TeV

Trigger condition:

- ✓ MSL with $p_{T,trigger} \sim 1 \text{ GeV/c}$
- ✓ MSH with $p_{T,trigger} \sim 4 \text{ GeV/c}$
- Same muon track selection as pp collisions
- 1. Normalize muon triggered events to the equivalent number of MB events on a run by run basis
- 2. Acceptance x efficiency correction:
 - from simulations using heavy-flavor signals from NLO pQCD predictions
 - centrality dependence of tracking efficiency estimated by embedding procedure, ~6% difference from 60-80% to 0-10% centrality class

3. Background subtraction:

- muons from charged K/ π decays
 - > similar as pp, consider the uncertainty on quenching strength
- muons from J/Ψ decays
 - similar as pp
- muons from W and Z/γ^* decays
 - similar as pp, add EPS 09 CNM effect parameterization
- 4. Systematic uncertainties estimation
- 5. Compare with model calculations

Compare with RUN-I

pp and Pb-Pb paper proposals are accepted by ALICE

- Compare with RUN-I: higher precision
- *R_{AA}* between the two energies are consistent within uncertainties

ALICE

- Vitev model catches the data well within uncertainty
- TAMU with no radiative energy loss
 overestimated data
- High precision data set stringent constraints
 to models

Compare with HFE

- * p_{T} > 5-6 GeV/c: dominated by beauty decay leptons
- Strong suppression in most 10% central collisions for heavy-flavor decay electrons at mid-rapidity (|y| < 0.6) and heavy-flavor decay muons at forward rapidity (2.5 < y < 4.0)
- Suppression of heavy-flavor decay muons is compatible with heavy-flavor decay electrons within uncertainties
 - Indication that heavy quarks suffered strong interactions in the QCD medium in a wide rapidity range

W in Pb-Pb at 5.02 TeV

First measurement of W production in Pb-Pb collisions at forward rapidity at LHC
Cross-section normalized to the number of binary collisions vs. centrality

- independent with the collision centrality
- \checkmark Yield normalized to the nuclear-overlap function T_{AA} vs. average number of participants
 - independent with the collision centrality

Summary and outlook

First measurement of R_{AA} of muons from open heavy-flavor decays in Pb-Pb collisions at 5.02 TeV:

- \checkmark A strong suppression in the 10% most central collisions reaching a factor ~3
- Results compatible within uncertainties with those obtained at 2.76 TeV
- R_{AA} measurement provides new constraints on energy loss models
- \checkmark heavy quarks suffered strong interactions in the QCD medium in a wide rapidity range

Outlook:

✓ We are extending the analysis for more differential observables

(HFM vs. multiplicity in pp, flow in p-Pb and higher order of flow in Pb-Pb, Upsilon vs.

multiplicity in pp, long-range correlations in pp...)

Backup

Nuclear modification of heavy flavour

* R_{AA} of heavy flavour decay muons extended to high p_T

Properties of W and Z boson by PDG

W

J = 1

 $\begin{array}{l} \text{Charge} = \pm 1 \ e \\ \text{Mass} \ m = 80.385 \pm 0.015 \ \text{GeV} \\ m_Z \ - \ m_W = 10.4 \pm 1.6 \ \text{GeV} \\ m_{W^+} \ - \ m_{W^-} = -0.2 \pm 0.6 \ \text{GeV} \\ \text{Full width} \ \Gamma = 2.085 \pm 0.042 \ \text{GeV} \\ \text{V}_{\pi\pm} \rangle = 15.70 \pm 0.35 \\ \left< N_{\pi\pm} \right> = 2.20 \pm 0.19 \\ \left< N_p \right> = 0.92 \pm 0.14 \\ \left< N_{\text{charged}} \right> = 19.39 \pm 0.08 \end{array}$

 W^- modes are charge conjugates of the modes below.

W ⁺ DECAY MODES	Fraction (Г ₁ /Г) Confidence level	<i>р</i> (MeV/c)
$\ell^+ u$	[b] (10.86± 0.0	09) %	_
$e^+ \nu$	(10.71 ± 0.1)	16) %	40192
$\mu^+ u$	(10.63 ± 0.1)	15) %	40192
$ au^+ u$	(11.38 ± 0.2)	21) %	40173
hadrons	(67.41 ± 0.2)	27) %	-
$\pi^+ \gamma$	< 7	$\times 10^{-5}$ 95%	40192
$D_s^+ \gamma$	< 1.3	$\times 10^{-3}$ 95%	40168
сX	(33.3 ± 2.0)	5)%	_
C <u>5</u>	$(31 \begin{array}{c} +13 \\ -11 \end{array})$) %	_
invisible	[c] (1.4 ± 2.9	9)%	-

Ζ

J=1

 $\begin{array}{l} \mbox{Charge} = 0 \\ \mbox{Mass } m = 91.1876 \pm 0.0021 \ \mbox{GeV} \ [d] \\ \mbox{Full width } \Gamma = 2.4952 \pm 0.0023 \ \mbox{GeV} \\ \mbox{$\Gamma(\ell^+\ell^-)$} = 83.984 \pm 0.086 \ \mbox{MeV} \ [b] \\ \mbox{$\Gamma(\mu^+\ell^-)$} = 499.0 \pm 1.5 \ \mbox{MeV} \ [e] \\ \mbox{$\Gamma(hadrons)$} = 1744.4 \pm 2.0 \ \mbox{MeV} \\ \mbox{$\Gamma(\mu^+\mu^-)$} / \mbox{$\Gamma(e^+e^-)$} = 1.0009 \pm 0.0028 \\ \mbox{$\Gamma(\tau^+\tau^-)$} / \mbox{$\Gamma(e^+e^-)$} = 1.0019 \pm 0.0032 \ [f] \\ \end{array}$

Average charged multiplicity

 $\langle N_{charged} \rangle = 20.76 \pm 0.16 \quad (S = 2.1)$

Couplings to quarks and leptons

 $\begin{array}{l} g_V^\ell = -0.03783 \pm 0.00041 \\ g_V^{\mu} = 0.25 \substack{+0.07 \\ -0.06} \\ g_V^d = -0.33 \substack{+0.05 \\ -0.06} \\ g_A^d = -0.50123 \pm 0.00026 \\ g_A^{\mu} = 0.50 \substack{+0.04 \\ -0.06} \\ g_A^d = -0.523 \substack{+0.050 \\ -0.029} \\ g^{\nu_\ell} = 0.5008 \pm 0.0008 \\ g^{\nu_\mu} = 0.503 \pm 0.09 \\ g^{\nu_\mu} = 0.502 \pm 0.017 \end{array}$

Asymmetry parameters [g]

 $\begin{array}{l} A_e = 0.1515 \pm 0.0019 \\ A_\mu = 0.142 \pm 0.015 \\ A_\tau = 0.143 \pm 0.004 \\ A_s = 0.90 \pm 0.09 \\ A_c = 0.670 \pm 0.027 \\ A_b = 0.923 \pm 0.020 \end{array}$

Charge asymmetry (%) at Z pole

$A_{FB}^{(0\ell)} = 1.71 \pm 0.10$
$A_{FB}^{(0u)} = 4 \pm 7$
$A_{FB}^{(0s)} = 9.8 \pm 1.1$
$A_{FB}^{(0c)} = 7.07 \pm 0.35$
$A_{FB}^{(0b)} = 9.92 \pm 0.16$

Z DECAY MODES	Fraction (Γ_i / Γ)	Confidence level	(MeV/ <i>c</i>)
e+ e-	(3.363 ±0.004)%		45594
$\mu^+\mu^-$	(3.366 ±0.007)%		45594
$\tau^+ \tau^-$	(3.370 ±0.008)%		45559
$\ell^+\ell^-$	[b] (3.3658±0.0023) %		-

Scale factor/

-

17

Why smaller W⁺ at backward rapidity?

CLHCP 2017

HF, W $^{\pm}$ and Z $^{0}/\gamma$ * MC templates

W^{\pm} and Z^o/ γ

Simulation configuration :

 \square W[±] and Z⁰/y^{*} generated with POWHEG in p-p, p-n & n-p collisions at 5.02 TeV

Generators :

POWHEG :

[JHEP 0807(2008)060]

- > is interfaced with PYTHIA6.4 [JHEP 05(2006)026] to apply showering, CTEQ6m/CT10 PDF
- shadowing : p or n considered in a Pb nucleus, parameterized with EPS09 [JHEP 0904(2009)065]

Combine p-p & p-n to obtain p-Pb :

🗖 A = 208, Z = 82

$$\frac{1}{N_{pPb}} \cdot \frac{dN_{pPb}}{dp_T} = \frac{Z}{A} \cdot \frac{1}{N_{pp}} \cdot \frac{dN_{pp}}{dp_T} + \frac{A-Z}{A} \cdot \frac{1}{N_{pn}} \cdot \frac{dN_{pn}}{dp_T}$$

Heavy-flavor (HF)

Simulation configuration :

Based on Fixed Order Next-to-Leading-Log (FONLL) with CTEQ6.6 [JHEP 1210(2012)137]

Examples of combined fit in ALICE

20

23, 2017

W-boson cross section in CMS

[Phys. Lett. B 750 (2015) 565]

CLHCP 2017

December 23, 2017

W-boson charge asymmetry in CMS

[Phys. Lett. B 750 (2015) 565]

