

Heavy flavor results in pPb and PbPb collisions with LHCb

Jiayin Sun (Tsinghua University) On behalf of the LHCb collaboration December 23rd, 2017

CLHCP2017

Outline

- Heavy flavor physics in *p*Pb collisions
- LHCb detector
- *p*Pb collisions: recent results
 - Open heavy flavor results
 - Hidden heavy flavor results
- PbPb collisions: work in progress

Heavy flavor physics in pPb collisions

- Heavy flavor states are sensitive probes to study the properties of the QGP created in AA collision.
 - Produced in the early stage of the collisions
 - Significant D^0 suppression observed in central PbPb collisions
 - Large Λ_c^+/D^0 ratio measured in mid-central AuAu collisions
 - J/ψ suppression a signature of deconfinement
- Heavy flavor in *p*A collisions provide baseline measurements to disentangle cold nuclear matter effects from effects of hot and dense medium.
- LHCb well suited for such measurements:
 - Heavy flavor measurement down to $p_{\rm T}$ close to 0
 - Separation of prompt and *b* decay components
- Cold Nuclear Matter effects
 - Initial state:
 - Modification of nuclear PDF
 - Gluon saturation
 - Multiple scattering of partons in the nucleus
 - Final state

LHCb detector

- A single arm forward spectrometer designed for the study of particles containing *c* or *b* quark.
- Acceptance: $2 < \eta < 5$
- Vertex detector
 - IP resolution ~ 20 μ m
- Tracking system
 - $\frac{\Delta p}{p} = 0.5\% 1\%$ (5-200 GeV/c)
- RICH
 - K/ π /p separation
- Electromagnetic
 - + hadronic
 - Calorimeters
- Muon systems

pPb datasets and recent results

- Rapidity Coverage
 - *y*^{*}: rapidity in nucleon-nucleon cms
 - $y_{cms} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$
- $\sqrt{s_{NN}} = 5 \text{ TeV} (2013)$
 - $pPb (1.06 \text{ nb}^{-1}) + Pbp (0.52 \text{ nb}^{-1})$
 - Open heavy flavor D^0 and Λ_c^+
- $\sqrt{s_{NN}} = 8 \text{ TeV} (2016)$
 - *p*Pb (13.6 nb⁻¹) + Pb*p* (21.8 nb⁻¹)
 - Hidden heavy flavor J/ψ

Prompt D^0 measurement in *p*Pb at 5TeV

- Reconstructed through decay channel: $D^0 \rightarrow K^- \pi^+$
- Inclusive *D*⁰ mesons from fitting invariant mass dist.:
 - Signal:
 - Crystal Ball+Gaussian
 - Background: linear
- Prompt *D*⁰fraction extracted from fitting impact parameter dist.:
 - Prompt: simulation
 - *D*⁰-from-*b*: simulation
 - Background: sideband in data

 $[\]frac{IP}{D^0} \frac{K^-}{\pi^+}$

Prompt D^0 at 5 TeV forward-backward production ratio

- $R_{FB} = \frac{d\sigma(+|y^*|,p_T)/dx}{d\sigma(-|y^*|,p_T)/dx}$
- R_{FB} does not need results from pp collisions.
- Compared to next-to-leading order NLO calculations with different nPDFs
- Consistent with theoretical calculations within uncertainty

LHCb-CONF-2017-005

Prompt Λ_c^+ at 5 TeV forward-backward production ratio

- $R_{FB} = \frac{d\sigma(+|y^*|,p_T)/dx}{d\sigma(-|y^*|,p_T)/dx}$
- R_{FB} does not need results from pp collisions.
- Compared to next-to-leading order NLO calculations with different nPDFs
- Consistent with theoretical calculations within uncertainty

Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5 TeV LHCb-CONF-2017-005

• $R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_T)}{\sigma_{D^0}(y^*, p_T)}$

- EPS09LO & EPS09NLO gives similar predictions.
- nCTEQ15 slightly lower.
- Forward:
 - Consistent at lower $p_{\rm T}$
 - Below theory at higher $p_{\rm T}$
- Backward:
 - Consistent for all $p_{\rm T}$

Eur. Phys. J. C77 (2017) 1, Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

Charmed baryon/meson production ratio $R_{\Lambda_c^+/D^0}$ at 5 TeV

•
$$R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_T)}{\sigma_{D^0}(y^*, p_T)}$$

- EPS09LO & EPS09NLO give similar predictions.
- nCTEQ15 slightly lower.
- Forward:
 - Consistent for all $|y^*|$
- Backward:
 - Consistent at lower $|y^*|$
 - Displays a rising trend with increasing |y^{*}|

Prompt and nonprompt J/ψ in *p*Pb at 8 TeV

- Reconstructed through $J/\psi \rightarrow \mu^+\mu^-$
- Signal extraction with 2D simultaneous fit to mass and the pseudo proper decay time

$$t_{z} \equiv \frac{\left(z_{J/\psi} - z_{PV}\right) \times M_{J/\psi}}{p_{z}}$$

- Prompt and nonprompt (from-*b*-hadrons) separated
- Fraction from *b* hadrons:
 - Increasing trend
 - Low $p_{\rm T}$: cold nuclear effects different for the prompt and nonprompt

Prompt J/ψ at 8 TeV nuclear modification factor in *p*Pb

 $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, A=208$

- pp reference: interpolation of LHCb measurements at 7, 8 and 13 TeV
- Forward rapidity: suppression up to 50% at low $p_{\rm T}$, decreasing with increasing $p_{\rm T}$
- Backward rapidity: closer to unity
- Overall agreement with models with large uncertainties on the gluon PDFs at low *x*
- Compatible with 5 TeV results

PLB774 (2017) 159

J/ψ -from-*b*-hadrons at 8 TeV nuclear modification factor in *p*Pb

 $R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{\mathrm{d}\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}{\mathrm{d}\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/\mathrm{d}x}, A=208$

- pp reference: interpolation of LHCb measurements at 7, 8 and 13 TeV
- Forward rapidity: smaller suppression up to 30% at low $p_{\rm T}$, reach unity at higher $p_{\rm T}$
- Backward: compatible with unity
- FONLL with EPS09NLO consistent with data
- Compatible with 5 TeV results

Prompt J/ψ at 8 TeV forward-backward production ratio

- $R_{\text{FB}} = \frac{\mathrm{d}\sigma(+|y^*|,p_{\text{T}})/\mathrm{d}x}{\mathrm{d}\sigma(-|y^*|,p_{\text{T}})/\mathrm{d}x}$
- *R*_{FB} does not need inputs from *pp* collisions.
- Prompt J/ψ :
 - Clear forward-backward asymmetry
 - Increasing trend with increasing $p_{\rm T}$
- Nonprompt J/ψ :
 - Closer to unity
- Models for prompt J/ψ only
- Consistent with 5 TeV results

PbPb collisions

- December 2015: first LHCb PbPb data taken
- $\sqrt{s_{NN}} = 5 \text{ TeV} (3-5 \ \mu \text{b}^{-1})$
- Event classification: total energy in the calorimeters (Ecal)
- Analyses limited by saturation in Vertex Locator (VELO)
- Track reconstruction: 50-100% event activity (~15k clusters)

Charm signals in PbPb dataset

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

Ultraperipheral J/ψ photo-production

• Selecting events containing only two muon tracks

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

Conclusion

- Heavy ion collisions
 - *p*Pb collisions at $\sqrt{s_{NN}} = 5$ and 8 TeV in 2013/2016
 - Open heavy flavor analyses: prompt D^0 and Λ_c^+
 - Hidden heavy flavor: prompt and nonprompt J/ψ
 - PbPb collisions at $\sqrt{s_{NN}} = 5$ TeV in 2015
 - Ongoing analyses on semi-central to peripheral collisions

