Based on results in CERN-EP-2017-199 (arXiv:1709.07242)

Search for MSSM Higgs and Z' decaying to ττ at ATLAS

CLHCP in Nanjing, 22-24 Dec. 2017

Lei Zhang, CLHCP, Nanjing 2017

Extended Higgs sector

Two-Higgs Doublets Model (2HDM)

- Minimum extension of Higgs sector
- Requested by MSSM, satisfies experimental constraints

• Two free parameters at tree level: m_A , tan $\beta = v_u/v_d$

$$m_{H^{\pm}}^{2} = m_{A}^{2} + m_{W}^{2}$$

$$m_{H,h}^{2} = \frac{1}{2} \left(m_{A}^{2} + m_{Z}^{2} \pm \sqrt{(m_{A}^{2} + m_{Z}^{2})^{2} - 4m_{A}^{2}m_{Z}^{2}\cos^{2}2\beta} \right)$$

Neutral heavy Higgs bosons

Coupling strength:

For $m_A \gg m_Z$: $\alpha \to \beta - \pi/2$ (coupling to down-type fermions enhanced by $\tan \beta$).

Production modes:

Decay channels:

Why τ is important

- Down-type, 3rd generation fermion and heaviest lepton
- Better experimental accessibility w.r.t. b quark
- Anomalies in B-factories, e.g. $B \rightarrow D^{(*)} \tau \upsilon$

A/H → TT Prospect study

 ττ has dominant sensitivity at most of parameter space

Why τ is important

- Down-type, 3rd generation fermion and heaviest lepton
- Better experimental accessibility w.r.t. b quark
- Anomalies in B-factories, e.g. $B \rightarrow D^{(*)} \tau \upsilon$

Extra gauge boson Z'

- Introduced in many BSM models with extended symmetry or extra dimension
- Benchmark model: Sequential SM (SSM) \rightarrow Extra SM-like Z' boson
- $Z' \rightarrow \tau \tau$ is sensitive to scenarios, e.g. non-universal G(221) model, which favors the 3rd generation

- Down-type, 3rd generation fermion and heaviest lepton
- Better experimental accessibility w.r.t. b quark
- Anomalies in B-factories, e.g. $B \rightarrow D^{(*)} \tau \upsilon$

- Down-type, 3rd generation fermion and heaviest lepton
- Better experimental accessibility w.r.t. b quark
- Anomalies in B-factories, e.g. $B \rightarrow D^{(*)} \tau \upsilon$

- Down-type, 3rd generation fermion and heaviest lepton
- Better experimental accessibility w.r.t. b quark
- Anomalies in B-factories, e.g. $B \rightarrow D^{(*)} \tau \upsilon$

Why τ is important

- Down-type, 3rd generation fermion and heaviest lepton
- Better experimental accessibility w.r.t. b quark
- Anomalies in B-factories, e.g. $B \rightarrow D^{(*)} \tau \upsilon$

History of di- τ analyses (a) ATLAS

- Down-type, 3rd generation fermion and heaviest lepton
- Better experimental accessibility w.r.t. b quark

Analysis strategy overview

Selections

- τ_{had}τ_{had} (42%): single tau trigger,
 p_T(τ₁)>85/130/165 GeV, p_T(τ₂)>65 GeV
- $\tau_{lep} \tau_{had}$ (46%): single e or μ trigger, $p_T(I/\tau_{had})>30/25$ GeV, $M_T(I, E_T^{miss})<40$ GeV

 τ →hadrons (65%) or lepton(35%)

- Futher selection: opposite charge sign, $\Delta \Phi(I/\tau_{had}, \tau_{had}) > 2.4/2.7$
- Categorization: b-veto (b-tag) with 0 (≥1) b-tagged jet @ 70% eff.

Analysis strategy overview

Selections

- τ_{had}τ_{had} (42%): single tau trigger,
 p_T(τ₁)>85/130/165 GeV, p_T(τ₂)>65 GeV
- $\tau_{lep}\tau_{had}$ (46%): single e or μ trigger, $p_T(I/\tau_{had})>30/25$ GeV, $M_T(I, E_T^{miss})<40$ GeV

- Futher selection: opposite charge sign, $\Delta \Phi(I/\tau_{had}, \tau_{had}) > 2.4/2.7$
- Categorization: b-veto (b-tag) with 0 (≥1) b-tagged jet @ 70% eff.

Jet fake τ_{had} estimation

 $\tau_{lep} \tau_{had}$: lepton fail

 $\tau_{lep} \tau_{had}$: leading tau

13

fail identification

isolation

- Simulation not suitable: modeling and sample size
- Fake Factor: $FF(n_{track}, p_T) = N_{pass}/N_{fail}$
 - Measured in top, W+jets, Multi-jet enriched regions

Jet fake τ_{had} estimation

- Simulation not suitable: modeling and sample size
- Fake Factor: $FF(n_{track}, p_T) = N_{pass}/N_{fail}$
 - Measured in top, W+jets, Multi-jet enriched regions

Jet fake τ_{had} estimation

- Simulation not suitable: modeling and sample size
- Fake Factor: $FF(n_{track}, p_T) = N_{pass}/N_{fail}$
 - Measured in top, W+jets, Multi-jet enriched regions
 - Application: $N_{bkg} = CR_{fail-ID} \times FF$; composition estimated by simulation ($\tau_{had}\tau_{had}$) or data-driven ($\tau_{lep}\tau_{had}$)

Final discriminant

Total transverse mass

$$m_{\rm T}^{\rm tot} \equiv \sqrt{(p_{\rm T}^{\tau_1} + p_{\rm T}^{\tau_2} + E_{\rm T}^{\rm miss})^2 - (\mathbf{p}_{\rm T}^{\tau_1} + \mathbf{p}_{\rm T}^{\tau_2} + \mathbf{E}_{\rm T}^{\rm miss})^2}$$

- Final fit model
 - $(\tau_e \tau_{had} + \tau_\mu \tau_{had} + \tau_{had} \tau_{had}) \times (btag+bveto)$
 - Top control region

Model independent limit

• Narrow width approximation: ggH, bbH

No deviation beyond 2 σ found

Model independent limit

• Narrow width approximation: ggH, bbH

Model dependent exclusion

- Exclusion contours in benchmark model: hMSSM
- Search range extended up to 1.7 TeV and tan $\beta \gtrsim 1$ excluded for $m_A \lesssim 350 \text{ GeV}$

Extra gauge boson Z'

No b-tag categorization in Z' search

- SSM Z'<2.5 TeV excluded
- Left(Right)-Handed only coupling, Narrow(Wide) width scenarios presented w-r-t SSM
- Non-universal G(221) model: $m_{Z'} \leq 2.25$ -2.6 TeV excluded in $0.03 < \sin^2 \phi < 0.5$.

Summary

- Latest result for MSSM Higgs and Z'→ττ search with 36.1 fb⁻¹ data presented (arXiv:1709.07242, submitted to JHEP)
 - Significantly extend the excluded parameter space
 - All information available
 - https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-12/
- Flagship analysis of ATLAS in the BSM Higgs program
 - Set many standards for ATLAS analyses (τ_{had} identification, background and signal modeling, statistical inference, ...)
- By the end of Run 2, data size will increase by a factor of 3.
 More exciting results ahead, stay tuned!

Make NJU-HEP Greater!

- Joined Nanjing University HEP group
 - Main focus: BSM search and Higgs precision measurement
- HEP group has great support from NJU and many open positions
 - Postdoc positions: <u>https://inspirehep.net/record/1636919</u>

Acceptance and efficiency

• Acceptance calculated with respect to all ditau final states

Fraction of events in b-tag category

 Fraction of events entering b-tag category for a scalar boson

MSSM Higgs sector

Various scenarios: hMSSM, m_h^{mod}, m_h^{max}

Fraction of events in b-tag category

 Fraction of events entering b-tag category for a scalar boson

Likelihood scan: ggH VS bbH

Acceptance and efficiency

• Acceptance calculated with respect to all ditau final states

Systematic uncertainties

- Major Systematics
 - Tau ID, energy scale, jet fake
 - Tau sys. dominant at the high mass regime