Search for Higgs boson pair production via $\boldsymbol{\gamma} \boldsymbol{\gamma} W \boldsymbol{W}^{*}(\rightarrow \boldsymbol{l v j} \boldsymbol{j})$ with the ATLAS detector

Qi Li
IHEP，Beijing

CLHCP 2017
Nanjing University，Nanjing
December 22－24， 2017

Introduction

- Higgs pair production has a small XS in SM (~33 fb @ 13 TeV) with triangle and box destructive interference.
- BSM can effectively enhance Higgs pair production.
\checkmark non-resonance: altered Higgs self-coupling or ttH coupling. [Fig. (a) and (b)]
\checkmark resonance: BSM resonance decay, such as heavy Higgs and Kaluza-Klein graviton. [Fig. (c)]
- This has been extensively searched with $\boldsymbol{h} \boldsymbol{h} \rightarrow$ $b b \gamma \gamma, b b b b, b b \tau \tau$ and $W W \gamma \gamma$ in RUN I and $h h \rightarrow$ $\boldsymbol{b} b \gamma \gamma, \boldsymbol{b} b b b, b b W W, W W W W, b b \tau \tau$ and $W W \gamma \gamma$ in RUN II

Phys. Rev. D 92, 092004 (2015)

Overview

- Search for Higgs pair with $W W \gamma \gamma \rightarrow \boldsymbol{j} j l v \gamma \gamma$
\checkmark Benefit from a large BR from $\boldsymbol{h} \rightarrow \boldsymbol{W} \boldsymbol{W}$ and a clean signature from $h \rightarrow \gamma \gamma$
- Signals
\checkmark non-resonant, SM Higgs pair model
\checkmark resonance in low mass region ($260, \mathbf{3 0 0}, \mathbf{4 0 0}, \mathbf{5 0 0} \mathbf{~ G e V}$), gg->X->hh, Spin0 with narrow decay width
- Share the same selections in non-resonant and resonant searches
- Counting experiment
- ATLAS-COM-CONF-2016-072

Object definitions

Photons

Two well identified and isolated photons with the following p_{T} and $m_{\gamma \gamma}$ selections:
$\frac{p_{T}(\gamma 1)}{m(\gamma \gamma)} \geq 0.35, \frac{p_{T}(\gamma 2)}{m(\gamma \gamma)} \geq 0.25 ;$
$m(\gamma \gamma) \in[105,160] \mathrm{GeV}$.

Electrons

$p_{T}>10 \mathrm{GeV}$;
$|\eta| \in[0,1.37] \cup[1.52,2.47] ;$
$\left|d_{0}\right| / \sigma\left(d_{0}\right)<5 ;\left|z_{0}\right|<0.5 \mathrm{~mm} ;$ Identification: Medium;
Isolation: Loose criteria.

Jets
Anti-kt jets with $\mathrm{R}=0.4$;
$p_{T}>25 \mathrm{GeV} ;|y|<2.5$;
Jet Vertex tagging algorithm (JVT) used to suppress the pileup jets;
$J V T$ scores $<0.59 \& p_{T}<60 \mathrm{GeV}$ $\&|\eta|<2.4$.

Muons:

$p_{T}>10 \mathrm{GeV} ;|\eta| \in[0,2.7] ;$
$\left|d_{0}\right| / \sigma\left(d_{0}\right)<3 ;\left|z_{0}\right|<0.5 \mathrm{~mm} ;$ Identification: Medium;
Isolation: GradientLoose criteria;

Event selection

- Start with the selections aiming at identifying $h \rightarrow \gamma \gamma$ events
- At least two central jets
- B-Veto (Working Point: 70\%)
- At least one lepton
- Tight miss window (TMW), $\left|m_{\gamma \gamma}-125.09\right|<2 \times 1.7\left(\sigma_{m_{\gamma \gamma}}\right) \mathrm{GeV}$
- [SR] Signal Region (above)
- [SB] Sideband Region (reverse "Tight Mass Window")
- [CR] Control Region (reverse "Tight Mass Window" \& N(lepton) = 0)

Background estimations

- SM Higgs background is estimated with MC.
- Continuum background is estimated with data-driven method.
$N_{S R}^{\text {continuum }}=N_{S B}^{\text {continuum }} \times \frac{\epsilon_{\gamma \gamma}}{1-\epsilon_{\gamma \gamma}}$
$\epsilon_{\gamma \gamma}$ is extracted from CR $\left(N_{\text {lep }}=0\right)$ with a fit.
$\epsilon_{\gamma \gamma}=\frac{\int_{T M W} f\left(m_{\gamma \gamma}\right) d m_{\gamma \gamma}}{\int_{105}^{160} f\left(m_{\gamma \gamma}\right) d m_{\gamma \gamma}}$,
$f\left(\mathrm{~m}_{\gamma \gamma}\right) \rightarrow$ fit function: exponential with $2^{\text {nd }}$ order polynomial

Continuum background

- $\epsilon_{\gamma \gamma}$ is measured in zero-lepton control region with data
- The exponential with $2^{\text {nd }}$ order polynomial is used to model background
$N_{S B}^{\text {continuum }}=46$ events
$\epsilon_{\gamma \gamma}=13.64 \%$
$N_{b k g}^{\text {continuum }}=7.26$ events

Summary of event yields

Process	Number of events	
Continuum background	7.26	± 1.23
SM single-Higgs	0.616	± 0.115
SM di-Higgs	0.0187	± 0.00224
Observed	15	

- The events within the TMW are listed in the table
- 15 events observed in the signal region, about 8 events for background
- No significant excess

Systematic uncertainties (1)

\square The uncertainties related to the continuum background.
— Statistical uncertainty of events (27) in sideband: 14.7\%.

- The uncertainties on $\epsilon_{\gamma \gamma}$ measurement
\checkmark From lepton multiplicity: 7.4\%,
\checkmark From fitting functions: 3.8\%,
\checkmark From sideband definition: 1.2\%,
\checkmark From statistics (using 10k toys): 1.3%.

SMGtematicuncertainties (t)

- Luminosity error, 2.9\%, combining errors on luminosity in 2015 and 2016
- Theoretical uncertainties
$\checkmark+2.1 / 2.0 \%$ on branching ratio of $h \rightarrow \gamma \gamma$ and $\pm 1.5 \%$ on $h \rightarrow W W$.
\checkmark Scale and PDF uncertainties on $\sigma(g g \rightarrow h h)$ and cross section of SM Higgs processes.
$\checkmark 37.5 \%$ assigned to Wh process for jet multiplicity, comparing Pythia8 (parton shower jets) and MadGraph5 (matrix element jets) both with 2 jets inclusively.
- Experimental uncertainties:
\checkmark Pileup reweighting, photons, jets, leptons, b-tagging

Systematic (3)

Source of uncertainties		All numbers are in \%			
Luminosity 2015+2016		2.9	2.9	2.9	-
Trigger		0.4	0.4	0.4	-
Pileup re-weighting		0.8	0.2	1.8	-
Event statistics		2.0	1.8	2.7	14.7
	energy resolution	2.0	1.8	1.2	
Photon	energy scale	4.2	4.1	1.6	-
Photon	identification	4.2	4.2	4.2	-
	isolation	1.0	1.0	1.1	-
Jet	energy resolution	0.8	0.2	8.0	-
	energy scale	3.5	3.5	5.2	-
	b-jets	0.06	0.05	5.4	-
	c-jets		0.5	0.3	-
b-tagging	light jets	0.4	0.4	0.4	-
	extrapolation	0.006	0.06	0.8	-
	electron	0.7	0.7	0.7	-
Lepton	muon	0.3	0.3	0.6	-
	lepton dependence	-	-	-	7.4
	background modelling	-	-	-	3.8
$\epsilon_{\gamma \gamma}$	sideband definition	-	-	-	1.2
	statistics on $\epsilon_{\gamma \gamma}$	-	-	-	1.3
	PDF	(2.1)	-	2.2	-
	α_{S}	(2.3)	-	1.5	-
	scale	(6.0)	-	3.7	-
Theory	HEFT	(5.0)	-	-	-
	jet multiplicity	-	-	12.5	-
	$\mathrm{BR}(h \rightarrow \gamma \gamma)$	2.1	2.1	2.1	-
	$\operatorname{BR}\left(h \rightarrow W W^{*}\right)$	1.5	1.5	1.5	-
Total		12.0	8.4	18.6	17.0

Expected upper limits

The 95\% CL upper limits have set.
Histfactory is used to build up the statistical model for an event-counting experiment.
Asymptotic approximation is used (was validated with throwing toys MCs). In the non-resonant search, the expected limit is $\mathbf{1 2 . 9} \mathbf{~ p b}$, and the observed one is $\mathbf{2 5 . 0}$ pb. For resonant search, the observed limit ranges from 47.7 pb to 24.7 pb and the expected limit ranges from 24.3 pb to 12.7 pb.

CMS result

Limits on the resonance $\sigma_{g g \rightarrow X} \times B r_{X \rightarrow h h}<1 \mathrm{pb}(300 \mathrm{GeV})$ $<4 \mathrm{fb}(3 \mathrm{TeV})$

Obs. (exp) limit on the $\sigma_{h h} / \sigma_{S M}$

Channel	CMS	ATLAS
$\boldsymbol{b} \overline{\boldsymbol{b}} \boldsymbol{\gamma} \boldsymbol{\gamma}$	$19(16)$	$177(162)$
$\boldsymbol{b} \overline{\boldsymbol{b}} \boldsymbol{\tau} \boldsymbol{\tau}$	$30(25)$	
$\boldsymbol{b} \overline{\boldsymbol{b}} \boldsymbol{b} \overline{\boldsymbol{b}}$	$342(308)$	$29(38)$
$\boldsymbol{b} \overline{\boldsymbol{b}} \boldsymbol{W} \boldsymbol{W}^{*}$	$79(308)$	
$\boldsymbol{\gamma} \boldsymbol{\gamma} \boldsymbol{W}^{*}$		$750(386)$

$2.3-3.2 \mathrm{fb}-1$
$13.3 \mathrm{fb}-1$
$35.9 \mathrm{fb}-1$

Summary

\square No significant excess is observed with respect to the SM background-only hypothesis.
\square The 95\% confidence-level upper limit have set.
\checkmark For non-resonant production, the observed limit on cross section is 25.0 pb and expected limit is $\mathbf{1 2 . 9} \mathrm{pb}$.
\checkmark For resonant production, the observed limit on the resonant production times the branching fraction of $X \rightarrow \boldsymbol{h} \boldsymbol{h}$ ranges from 47.7 pb to 24.7 pb and the expected limit ranges from 24.3 pb to 12.7 pb .
\square The analysis with more data ($36.1 \mathrm{fb}-1$) is ongoing. The result will be combined with other channels and will be interpreted to the specific models.

Backup

$\epsilon_{\gamma \gamma}$ measurement (1)

Test against different lepton multiplicities with MC to quantify the impact on $\epsilon_{\gamma \gamma}$. MC $j j l v \gamma \gamma$ and $j j \gamma \gamma$ are compared.
The difference on the $\epsilon_{\gamma \gamma}$ is 2.2%.
Test against different lepton multiplicities with data control regions to quantify the impact on $\epsilon_{\gamma \gamma}$.
As the MC samples have high diphoton purity, $\epsilon_{\gamma \gamma}$ has been measured with regions by inverting either the photon isolation or the photon identification to check the impact of lepton multiplicities.
The difference on the $\epsilon_{\gamma \gamma}$ is 7.4% and considered as one of uncertainties conservatively introduced by lepton multiplicities.

Test against different sideband region definitions to quantify the impact on $\epsilon_{\gamma \gamma}$. The difference (1.2\%) on $\epsilon_{\gamma \gamma}$ between nominal definition and varied one is considered as one of uncertainties introduced by the SB definition.

$\epsilon_{\gamma \gamma}$ measurement (2)

- Test against various fitting functions of background modeling to quantify the impact on $\epsilon_{\gamma \gamma}$.
- Fitting functions: 0 order polynomial, $1^{\text {st }}$-order polynomial, $2^{\text {nd }}$-order polynomial, exponential.
- The largest difference on $\epsilon_{\gamma \gamma}$ to the nominal is taken as uncertainty except comparing the 0 order polynomial due to this function is improper to fit the $m_{\gamma \gamma}$ shape.
- The difference between the 1st order polynomial and nominal fit model is 3.8% and is considered as uncertainty introduced by the choice of fitting functions.

