

Probing light milli-charged particles at the BESII

Yu Zhang (张宇) Nanjing University

collaboration with Zuowei Liu, ArXiv:1712.XXXXX

3rd CLHCP, Nanjing 2017-12-23

Outline

- Introduction
- Phenomenology at BESIII detector
- Summary

Introduction

The puzzle of electric charge

About 1910 Robert Millikan and Harvey Fletcher "oil drop" experiment elucidated the magnitude of the electron charge *e*. And by the early 1920s there was consensus that *e* was the smallest electric charge.

This was not challenged until the 1960s when physicists adopted the view of quarks as real elementary particles. *e*/3 or *2e*/3

Any other charges such as 1.001e, 0.005e, πe ?

Milli-charge

- εe: ε is any real number
- $\varepsilon < 1$ milli-charged particle (MCP)
- Dark matter candidate?

Status on searches for milli-charged particles

1511.01122

Phenomenology at BESIII detector

BEPCII: high luminosity double-ring collider

Satellite view of BEPCII /BESIII

South South

Beam energy: Designed luminosity: Optimum energy: Achieved luminosity: Data taken from:

LINAC

1.0-2.3 GeV 1.00×10³³ cm⁻²s⁻¹ 1.89 GeV 1.00×10³³ cm⁻²s⁻¹ 2009

From H. L. Ma's slide

BESIII detector

$$\Delta \mathcal{L} \sim -\varepsilon e \overline{\chi} \gamma^{\mu} A_{\mu} \chi$$

χ is a massive Dirac fermion

Phenomenology at BESIII detector Mono-photon signature

 $e^+e^- \to \gamma^*\gamma \to \chi\bar{\chi}\gamma$

 $e^+e^- \rightarrow \nu \bar{\nu} \gamma$

Event simulation

Energy resolution: $\frac{2.3\%}{\sqrt{E/GeV}} \oplus 1\%$ from 20 MeV to 2 GeV for BESIII

 $E^{\gamma} > 25$ MeV in the EMC barrel ($|\cos \theta^{\gamma}| < 0.8$) or $E^{\gamma} > 50$ MeV in the EMC end-caps ($0.86 < |\cos \theta^{\gamma}| < 0.92$)

Cross section and 2σ lower limit of ε as a function of \sqrt{s} with 1 fb⁻¹ luminosity

 $S(\varepsilon)/\sqrt{S(\varepsilon)+B} > 2$

Data samples were collected by BESIII

2.9 fb⁻¹ psi(3770) at 3.773 GeV, 2010 + 2011

0.5 fb⁻¹ psi(4040) at 4.009 GeV, 2011

0.024 fb⁻¹ tau mass scan at around 3.554 GeV, 2011

1.3x10⁹ J/psi at Ecm=3.097 GeV, 2009 (0.225x10⁹) + 2012

0.5x10⁹ psi(3686) at Ecm=3.686 GeV, 2009 (0.106x10⁹) + 2012

1.9 fb⁻¹ Y(4260) at 4.23 and 4.26 GeV, 2013

0.5 fb⁻¹ Y(4360) at 4.36 GeV, 2013

0.5 fb⁻¹ Y(4260) and Y(4360) scan, 2013

0.8 fb⁻¹ R scan, 104 energy points between 3.85 and 4.59 GeV, 2014

0.5 fb⁻¹ at 4.60 GeV, 2014

0.1 fb⁻¹ at 4.47 and 4.53 GeV for line shape, 2014

0.04 fb⁻¹ around the threshold of Lambda charm, 2014

1.0 fb⁻¹ at 4.42 GeV, 2014

0.5 fb-1 data for R scan from 2.0 to 3.08 GeV, 2015

0.1 fb-1 data @ 2.125 GeV, 2015

3.1 fb-1 data at 4.18 GeV, 2016

http://bes3.ihep.ac.cn/datasets/datasets.htm

Combine results of different \sqrt{s}

Test Statistic (TS)
$$\chi^{2}(S,B) \equiv S(\varepsilon)/\sqrt{S(\varepsilon) + B}$$
$$\Delta\chi^{2} = \chi^{2}(m_{\chi},\varepsilon) - \chi^{2}(m_{\chi},\varepsilon = 0) = 2.71$$
$$E_{95} \text{ corresponding to 95\% upper limit}$$
$$\chi^{2}(S,B) = -2\ln\mathcal{L}(S,B)$$
$$\chi^{2} = -2\ln\mathcal{L} = -2\ln\left(\prod_{i}\mathcal{L}_{i}\right) = \sum_{i}(-2\ln\mathcal{L}_{i}) = \sum_{i}\chi_{i}^{2} = \sum_{i}\frac{S_{i}(\varepsilon)}{\sqrt{S_{i}(\varepsilon) + B_{i}}}$$
$$\Delta\chi^{2} = \sum_{i}\left(\frac{S_{i}(\varepsilon)}{\sqrt{S_{i}(\varepsilon) + B_{i}}} - \frac{S_{i}(\varepsilon = 0)}{\sqrt{S_{i}(\varepsilon = 0) + B_{i}}}\right) = 2.71$$

Combine results of different \sqrt{s}

	2.9 fb ⁻¹ psi(3770) at 3.773 GeV, 2010 + 2011	$\sqrt{s} \; (\text{GeV})$	Luminosity (fb^{-1})	В	$\varepsilon_{95}(m_{\chi}=0.1{\rm GeV})$	$\varepsilon_{95}(m_{\chi} = 1 \text{GeV})$ s	$\varepsilon_{95}(m_{\chi} = 2 \mathrm{GeV})$
	0.5 fb ⁻¹ psi(4040) at 4.009 GeV, 2011	2.125	0.1	0.03	0.0062	0.020	_
	<mark>0.024 fb⁻¹ tau mass scan at around 3.554 G</mark> e	3.097	0.8	0.60	0.0032	0.0043	_
	1.3x10 ⁹ J/psi at Ecm=3.097 GeV, 2009 (0.225)	3.554	0.024	0.02	0.019	0.025	_
	<mark>0.5x10⁹ psi(3686) at Ecm=3.686 GeV, 2009 (</mark> 0.	2.686	1	1 1 2	0.0024	0.0042	
	1.9 fb ⁻¹ Y(4260) at 4.23 and 4.26 GeV, 2013	3.080	1	1.15	0.0054	0.0043	—
	0.5 fb ⁻¹ Y(4360) at 4.36 GeV, 2013	3.773	2.9	3.46	0.0023	0.0029	_
	0.5 fb ⁻¹ Y(4260) and Y(4360) scan, 2013	4.009	0.5	0.69	0.0051	0.0062	_
	0.8 fb ⁻¹ R scan, 104 energy points between 3	4.18	3.1	4.68	0.0027	0.0031	0.0084
	0.5 fb ⁻¹ at 4.60 GeV, 2014	4.23	1.9	2.96	0.0034	0.0037	0.0088
	0.1 fb ⁻¹ at 4.47 and 4.53 GeV for line shape, 2	4.26	1.9	3.01	0.0034	0.0038	0.0084
	0.04 fb ⁻¹ around the threshold of Lambda ch	1 26	0.5	0.92	0.0061	0.0066	0.012
	1.0 fb ⁻¹ at 4.42 GeV, 2014	4.30	0.5	0.00	0.0001	0.0000	0.013
	0.5 fb-1 data for R scan from 2.0 to 3.08 GeV	4.42	1	1.72	0.0047	0.0050	0.0090
~	0.1 fb-1 data @ 2.125 GeV, 2015	4.6	0.5	0.94	0.0066	0.0069	0.011
\checkmark	3.1 fb-1 data at 4.18 GeV, 2016	Combine results			0.00078	0.00096	0.0030

Combine results of different \sqrt{s}

Something worthy of note

$$\operatorname{Br}(J/\psi \to \gamma \nu \bar{\nu}) = 0.7 \times 10^{-10}$$

Summary

Summary

- We propose a search for milli-charged particles via mono-photon signature at BESIII detector at BEPCII in a simplified extended model.
- We present the cross section of signal and background and 2σ lower limit of ε as a function of \sqrt{s} with 1 fb⁻¹ luminosity.
- Using the collected data luminosity at BESIII, we present the constrains on the charge of milli-charged particle for 7.8 × 10⁻⁴e~3.0 × 10⁻³e over the its mass range of 0.1 GeV ~ 2 GeV, which can be by up to two orders of magnitude over previous direct experiments.

