- Coauthored with Qiang Li
- With special thanks to Kaoru Hagiwara

Probing the Dark Sector through Mono-Z Boson Leptonic decays

Daneng Yang
School of Physics, Peking University

The Third China LHC Physics Workshop, Dec 22nd-24th, 2017 Nanjing University, Nanjing

Background

Measuring angular coefficients of high pT Z boson leptonic decays Z boson pT balanced by jets $\longrightarrow \mathrm{Z}$ boson pT balanced by missing energy

Recent expermental results on the angular coefficients of Z

 boson leptonic decays at the thic

q_{T}
a_{T}

q_{T}

Nice agreement!

CMS: Phys. Lett. B 750 (2015) 154

ATLAS: JHEP08(2016)159

Order in $Q C D$

$0^{\text {th }}$ A4 only, from qquar->Z
$1^{\text {st }} A 0-A 4$,
Lam-Tung relation: $\mathrm{A} 0=\mathrm{A} 2$
$2^{\text {nd }}$ A0-A7, all appear
Comparing the measured angular coefficients and the parton level predictions (L.O.)
> The Z boson e/mu decays have very clean signatures
$>$ QCD corrections to angular coefficients are very small

Angular coefficients in the Collins-Soper frame

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} q_{\mathrm{T}} \mathrm{~d} y_{\mathrm{Z}} \mathrm{~d} s_{\mathrm{Z}} \mathrm{~d} \cos \theta \mathrm{~d} \phi} & =\left(\int \mathrm{d} \cos \theta \mathrm{~d} \phi \frac{\mathrm{~d} \sigma}{\mathrm{~d} q_{\mathrm{T}} \mathrm{~d} y_{\mathrm{Z}} \mathrm{~d} s_{\mathrm{Z}} \mathrm{~d} \cos \theta \mathrm{~d} \phi}\right) \frac{3}{16 \pi} \\
& \left\{\left(1+\cos ^{2} \theta\right)+\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi\right. \\
& \left.+\frac{1}{2} A_{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta\right\}
\end{aligned}
$$

Pecent experinental resulis on the angular coefficients of Z

 boson leptonic decays at the thic

ATLAS: JHEP08(2016)159
CIMIS: Phys. Lett. B 750 (2015) 154

Order in $Q C D$

$0^{\text {th }}$ A4 only, from qquar->Z
$1^{\text {st }} A 0-A 4$,
Lam-Tung relation: $\mathrm{A} 0=\mathrm{A} 2$
$2^{\text {nd }}$ A0-A7, all appear
Comparing the measured angular coefficients and the parton level predictions (L.O.)

Nice agreement!

> The Z boson e/mu decays have very clean signatures
$>$ QCD corrections to angular coefficients are very small

Angular coefficients in the Collins-Soper frame

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} q_{\mathrm{T}} \mathrm{~d} y_{\mathrm{Z}} \mathrm{~d} s_{\mathrm{Z}} \mathrm{~d} \cos \theta \mathrm{~d} \phi} & =\left(\int \mathrm{d} \cos \theta \mathrm{~d} \phi \frac{\mathrm{~d} \sigma}{\mathrm{~d} q_{\mathrm{T}} \mathrm{~d} y_{\mathrm{Z}} \mathrm{~d} s_{\mathrm{Z}} \mathrm{~d} \cos \theta \mathrm{~d} \phi}\right) \frac{3}{16 \pi} \\
& \left\{\left(1+\cos ^{2} \theta\right)+\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi\right. \\
& \left.+\frac{1}{2} A_{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta\right\}
\end{aligned}
$$

Parametrization of the lepton angular distribution

Measuring angular coefficients of high pT Z boson leptonic decays Z boson pT balanced by jets $\longrightarrow \mathrm{Z}$ boson pT balanced by missing energy

We parametrize the phase space such that the visible part is $\mathbf{x}=\left(y_{Z}, q_{\mathrm{T}}, \cos \theta_{C S}, \phi_{C S}\right)$ and the invisible part is ($y_{\mathrm{Y}}, s_{\mathrm{Y}}, \cos \theta_{\chi}, \phi_{\chi}$)

$$
\begin{aligned}
& \int \mathrm{d} \Phi_{4}\left(k_{l}, k_{l}, k_{\chi}, k_{\bar{\chi}}\right)=\int \frac{\mathrm{d} s_{Z}}{2 \pi} \frac{\mathrm{~d} s_{\mathrm{X}}}{2 \pi} \int \mathrm{~d} \Phi_{2}^{\prime}\left(p_{\mathrm{Y}}, p_{\mathrm{Z}}\right) \mathrm{d} \Phi_{2}\left(k_{l}, k_{l}\right) \mathrm{d} \Phi_{2}\left(k_{\chi}, k_{\bar{\chi}}\right), \\
& \int \mathrm{d} \Phi_{2}^{\prime}\left(p_{\mathrm{Y}}, p_{\mathrm{Z}}\right)=\int \frac{\mathrm{d}^{3} p_{\mathrm{Z}}}{(2 \pi)^{3} 2 p_{\mathrm{Z}}^{0}} \frac{\mathrm{~d}^{3} p_{\mathrm{Y}}}{(2 \pi)^{3} 2 p_{\mathrm{Y}}^{0}}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{\mathrm{Z}}-p_{\mathrm{Y}}\right), \\
& =\frac{1}{4 \pi s} \int \mathrm{~d}_{\mathrm{Z}} \mathrm{~d} y_{\mathrm{Y}} q_{\mathrm{T}} \cdot q_{\mathrm{T}} \\
& \delta\left(x_{1}-\frac{x_{\mathrm{T}, \mathrm{Z}}}{2} \mathrm{e}^{y \mathrm{Z}}-\frac{x_{\mathrm{T}, \mathrm{Y}}}{2} \mathrm{e}^{y \mathrm{Y}}\right) \delta\left(x_{2}-\frac{x_{\mathrm{T}, \mathrm{Z}}}{2} \mathrm{e}^{-y \mathrm{Z}}-\frac{x_{\mathrm{T}, \mathrm{Y}}}{2} \mathrm{e}^{-y \mathrm{Y}}\right) \\
& \int \mathrm{d} \Phi_{2}\left(k_{1}, k_{2}\right)=\frac{1}{8 \pi} \bar{\beta}\left(\frac{\mathrm{~m}_{1}^{2}}{s_{12}}, \frac{\mathrm{~m}_{2}^{2}}{s_{12}}\right) \frac{\mathrm{d} \cos \theta}{2} \frac{\mathrm{~d} \phi}{2 \pi}, \\
& \bar{\beta}(a, b)=\sqrt{\lambda(1, a, b)}=\sqrt{1+a^{2}+b^{2}-2 a-2 b-2 a b} . \\
& x_{\mathrm{T}, \mathrm{Z}}=\frac{2 \sqrt{s_{\mathrm{Z}}+q_{\mathrm{T}}^{2}}}{\sqrt{s}}, x_{\mathrm{T}, \mathrm{Y}}=\frac{2 \sqrt{s_{\mathrm{Y}}+q_{\mathrm{T}}^{2}}}{\sqrt{s}}
\end{aligned}
$$

x_{1}, x_{2} fixed through delta functions

- The z-axis is defined as the bisector of the angle θ_{12} between p_{1} and $-p_{2}$.

- $\tan \frac{\theta_{12}}{2}=\frac{\mathrm{q}_{\mathrm{T}}}{\sqrt{{ }_{\mathrm{S}}}}, \mathrm{q}_{\mathrm{T}} \equiv\left|\mathbf{q}_{\mathrm{T}}\right|:$
- θ_{12} independent of longitudinal boost
- Minimize the impact of incoming quark transverse momentum
- Rotate around the x -axis by π for events with $\mathrm{y}_{\mathrm{Z}}<0$:
- Avoid possible dilutions by the initial states swapped processes
- Angular coefficients have symmetric y_{z} distributions

We consider the Z boson decay as a probe of the underlying

 production structure with a narrow width approximation.$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} y_{\mathrm{Z}} \mathrm{~d} q_{\mathrm{T}} \mathrm{~d} s_{\mathrm{Y}} \mathrm{~d} \Phi_{2}\left(k_{\chi}, k_{\bar{\chi}}\right) \mathrm{d} \cos \theta \mathrm{~d} \phi}=\frac{\mathrm{d} \sigma_{P}}{\mathrm{~d} y_{\mathrm{Z}} \mathrm{~d} q_{\mathrm{T}} \mathrm{~d} s_{\mathrm{Y}} \mathrm{~d} \Phi_{2}\left(k_{\chi}, k_{\bar{\chi}}\right)} \cdot \operatorname{Br}\left(\mathrm{Z} \rightarrow l^{+} l^{-}\right) \cdot 3 \sum_{s, s^{\prime}} \rho_{s s^{\prime}}^{\mathrm{P}} \rho_{s s^{\prime}}^{\mathrm{D}}
$$

$$
\operatorname{Tr} \rho^{\mathrm{P}}=\int_{\mathcal{R}} \mathrm{d} \Phi_{2}^{\prime}\left(p_{\mathrm{Y}}, p_{\mathrm{Z}}\right) \mathrm{d} \Phi_{2}\left(k_{\chi}, k_{\bar{\chi}}\right) \sum_{a, b} f_{a}\left(x_{1}, \mu_{\mathrm{F}}\right) f_{b}\left(x_{2}, \mu_{\mathrm{F}}\right) \frac{1}{2 \hat{s}} \overline{\sum_{\mathrm{ext}}} \sum_{s}\left|\mathcal{M}_{s}\right|^{2}
$$

$$
\rho_{s s^{\prime}}^{\mathrm{P}}=\frac{1}{\operatorname{Tr} \rho^{\mathrm{P}}} \int_{\mathcal{R}} \mathrm{d} \Phi_{2}^{\prime}\left(p_{\mathrm{Y}}, p_{\mathrm{Z}}\right) \mathrm{d} \Phi_{2}\left(k_{\chi}, k_{\bar{\chi}}\right) \sum_{a, b} f_{a}\left(x_{1}, \mu_{\mathrm{F}}\right) f_{b}\left(x_{2}, \mu_{\mathrm{F}}\right) \frac{1}{2 \hat{s}} \sum_{\mathrm{ext}} \mathcal{M}_{s} \mathcal{M}_{s^{\prime}}^{*}
$$ coefficients

$\rho_{s s^{\prime}}^{\mathrm{P}, C S}=\sum_{\alpha, \beta} d_{\alpha s}^{J=1}(-\omega) d_{\beta s^{\prime}}^{J=1}(-\omega) \rho_{\alpha \beta}^{\mathrm{P}, H E L}$
$\cos \omega=\frac{2 \sqrt{\tau_{\mathrm{Z}}} \sinh y_{\mathrm{Z}}}{\sqrt{x_{\mathrm{T}, \mathrm{Z}}^{2} \cosh ^{2} y_{\mathrm{Z}}-4 \tau_{\mathrm{Z}}}}$,

- Analytic implementation (ALOHA generated HELAS subroutines): allows application of matrix element method (MEM).
- All evaluated angular coefficients checked with toy measurements based on MadGraph5 generated events.

Parameter	Value
$\sin ^{2} \theta_{W}$	0.23129
$1 / \alpha$	127.95
$\mathrm{~m}_{\mathrm{Z}}$	91.1876 GeV
Γ_{Z}	2.4952 GeV
α_{S}	$0.13(\mathrm{NNPDF} 23)$
m_{W}	$\mathrm{m}_{\mathrm{Z}} \cos \theta_{W}$
$\operatorname{Br}(\mathrm{Z} \rightarrow \mathrm{ll}), \mathrm{l}=\mathrm{e}, \mu$	6.73%
μ_{F}	$E_{T}=\sqrt{s_{Z}+q_{T}^{2}}$

We will show $y_{Z}-q_{T}$ distributions of A_{0-4} in different scenarios

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\frac{\mathrm{~d} q_{\mathrm{T}} \mathrm{~d} y_{\mathrm{Z}} \mathrm{~d} s_{\mathrm{Z}} \mathrm{cos} \theta \mathrm{~d} \phi}{}}=\left(\int \mathrm{d} \cos \theta \mathrm{~d} \phi \frac{\mathrm{~d} \sigma}{\mathrm{~d} q_{\mathrm{T}} \mathrm{~d} y_{\mathrm{Z}} \mathrm{~d} s \mathrm{Z} \cos \theta \mathrm{~d} \phi}\right) \frac{3}{16 \pi} \\
&\left\{\left(1+\cos ^{2} \theta\right)+\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi\right. \\
&\left.+\frac{1}{2} A_{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta\right\}
\end{aligned}
$$

Ingular coefficients with dark sector models

ㅁ SMI ZZ $\rightarrow 21$ 2v background
\square Spin-0 mediator
ㅁ Spin-1 mediator

- Spin-2 mediator

Anguiar coefifionts with darl sector models

Spin-0 models

$$
\begin{aligned}
\mathcal{L}_{S M E W}^{Y_{0}}= & \frac{1}{\Lambda} g_{h 3}^{S}\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right) Y_{0} \\
& +\frac{1}{\Lambda} B_{\mu \nu}\left(g_{B}^{S} B^{\mu \nu}+g_{B}^{P} \tilde{B}^{\mu \nu}\right) Y_{0}+\frac{1}{\Lambda} W_{\mu \nu}^{i}\left(g_{W}^{S} W^{i, \mu \nu}+g_{W}^{P} \tilde{W}^{i, \mu \nu}\right) Y_{0}, \\
\mathcal{L}_{X}^{Y_{0}}= & \mathrm{m}_{\chi C} g_{X_{C}}^{S} \chi_{C}^{*} \chi_{C} Y_{0}+\bar{\chi}_{D}\left(g_{X_{D}}^{S}+i g_{X_{D}}^{P} \gamma_{5}\right) \chi_{D} Y_{0},
\end{aligned}
$$

Benchmark	$\mathrm{S} 0_{a}$	$\mathrm{~S}_{b}$	$\mathrm{~S} 0_{c}$
$g_{X_{D}}^{S}$	1	0	0
$g_{X_{D}}^{P}$	0	1	0
$g_{X_{C}}^{S}$	0	0	1
g_{W}^{S}	0.25	0	0
g_{W}^{P}	0	0.25	0
$g_{h 3}^{S}$	0	0	1
$\Lambda(\mathrm{GeV})$	3000	3000	3000
Interaction	CP-even	CP -odd	CP -even
$\mathrm{m}_{\chi}(\mathrm{GeV})$	10	10	10
$\mathrm{~m}_{\mathrm{Y}_{0}}(\mathrm{GeV})$	1000	1000	1000
$\Gamma_{Y_{0}}(\mathrm{GeV})$	41.4	41.4	1.05
Cross section (fb)	0.0103	0.00977	$2.98 \mathrm{e}-08$

- JHEP 02 (2016) 082
- Report of the ATLAS/CMS Dark Matter Forum, 1507.00966
- Eur. Phys. J. C77 (2017) 326

Spin-2 models

$$
\begin{aligned}
\mathcal{L}_{X}^{Y_{2}} & =-\frac{1}{\Lambda} g_{X}^{T} T_{\mu \nu}^{X} Y_{2}^{\mu \nu} \\
\mathcal{L}_{\mathrm{SM}}^{Y_{2}} & =-\frac{1}{\Lambda} \sum_{i} g_{i}^{T} T_{\mu \nu}^{i} Y_{2}^{\mu \nu}
\end{aligned}
$$

Spin-1 models

$$
\begin{aligned}
& \mathcal{L}_{X_{D}}^{Y_{1}}=\bar{\chi}_{D} \gamma_{\mu}\left(g_{X_{D}}^{V}+g_{X_{D}}^{A} \gamma_{5}\right) \chi_{D} Y_{1}^{\mu} \\
& \mathcal{L}_{S M}^{Y_{1}}=\bar{d}_{i}\left(g_{d_{i j}}^{V}+g_{d_{i j}}^{A} \gamma_{5}\right) d_{j} Y_{1}^{\mu}+\bar{u}_{i}\left(g_{u_{i j}}^{V}+g_{u_{i j}}^{A} \gamma_{5}\right) u_{j} Y_{1}^{\mu}
\end{aligned}
$$

Benchmark	$\mathrm{S} 1_{a}$ Spin independent	$\mathrm{S} 1_{b}$ Right handed	$\mathrm{S} 1_{c}$ Left handed	$\mathrm{SM}(\mathrm{ZZ} \rightarrow 2 l 2 \nu)$
$g_{X_{D}}^{V}$	1	$1 / \sqrt{2}$	$1 / \sqrt{2}$	-
$g_{X_{D}}^{A}$	0	$1 / \sqrt{2}$	$-1 / \sqrt{2}$	-
$g_{X_{C}}^{V_{D}}$	0	0	0	-
g_{u}^{V}	0.25	$\sqrt{2} / 8$	$\sqrt{2} / 8$	-
g_{u}^{A}	0	$\sqrt{2} / 8$	$-\sqrt{2} / 8$	-
g_{d}^{V}	0.25	$\sqrt{2} / 8$	$\sqrt{2} / 8$	-
g_{d}^{A}	0	$\sqrt{2} / 8$	$-\sqrt{2} / 8$	-
$\mathrm{m}_{\chi}(\mathrm{GeV})$	10	10	10	-
$\mathrm{m}_{\mathrm{Y}_{1}}(\mathrm{GeV})$	1000	1000	1000	-
$\Gamma_{Y_{1}}(\mathrm{GeV})$	56.3	55.9	55.9	-
Cross section (fb)	2.50	0.533	4.50	239

Benchmark	$\mathrm{S} 2_{a}$	$\mathrm{~S} 2_{b}$	$\mathrm{~S} 2_{c}$
$g_{X_{D}}^{T}$	1	0	0
$g_{X_{R}}$	0	1	0
$g_{X_{V}}^{T}$	0	0	1
$g_{S M}^{T}$	1	1	1
$\mathrm{~m}_{\chi}(\mathrm{GeV})$	10	10	10
$\mathrm{~m}_{\mathrm{Y}_{2}}(\mathrm{GeV})$	1000	1000	1000
Λ	3000	3000	3000
$\Gamma_{Y_{2}}(\mathrm{GeV})$	95.3	93.7	97.7
Cross section (fb)	2.73	0.0462	0.578

$y_{Z}-q_{T}$ differential cross section

A0 in the $y_{Z}-q_{T}$ plane

Al in the $y_{Z}-q_{T}$ plane

Distributions look similar
 Exception: Al in $\mathrm{SOc}=0$

A2 in the $y_{Z}-q_{T}$ plane

Sensitive to spin-0 models
Spin-2 signature similar but different from the one of the spin-1 model

A3 in the $y_{Z}-q_{T}$ plane

A3, A4: Sensitive to the left- and right- handed couplings

A4 in the $y_{Z}-q_{T}$ plane

SM ZZ $\boldsymbol{\rightarrow} \mathbf{2 1 2 v}$
Spin-0 mediator (a-c)

A3, A4: Sensitive to the left- and right- handed couplings

Visible part:

$$
\mathbf{x}=\left(y_{\mathrm{Z}}, q_{\mathrm{T}}, \cos \theta_{C S}, \phi_{C S}\right)
$$

Invisible part (integrated): $\quad\left(y_{\mathrm{Y}}, s_{\mathrm{Y}}, \cos \theta_{\chi}, \phi_{\chi}\right)$

Setting limits on the coupling strength parameters

- Benchmark scenarios S0a, SOb, S0c
\square Benchmark scenarios Sla, Slb, Slc

We exploit a dynamically constructed matrix element based
likelihood function to set limits on the coupling strength parameters:

$$
\rho\left(\mathbf{p}^{\mathrm{vis}} \mid \lambda\right)=\frac{1}{\sigma_{\lambda}} \sum_{a, b} \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{a}\left(x_{1}, \mu_{\mathrm{F}}\right) f_{b}\left(x_{2}, \mu_{\mathrm{F}}\right) \int \mathrm{d} \Phi \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} \Phi} \prod_{i \in \mathrm{vis}} \delta\left(\mathbf{p}_{i}-\mathbf{p}_{i}^{v i s}\right)
$$

Visible part:
Invisible part (integrated): $\quad\left(y_{\mathrm{Y}}, s_{\mathrm{Y}}, \cos \theta_{\chi}, \phi_{\chi}\right)$

An unbinned likelihood fit is performed to extract limit
λ scales couplings of the dark mediator to the dark matter and the SM particles at the same time
$\mathcal{L}($ data $\mid \lambda, \boldsymbol{\theta})=\operatorname{Poisson}(N \mid S(\lambda, \boldsymbol{\theta})+B(\boldsymbol{\theta})) \rho(\boldsymbol{\theta}) \prod_{i} \rho\left(\mathbf{x}^{i} \mid \lambda, \boldsymbol{\theta}\right)$,

$$
\rho(\mathbf{x} \mid \lambda, \boldsymbol{\theta})=\frac{S(\lambda, \boldsymbol{\theta}) \rho_{s}\left(\mathbf{x}^{i}, \lambda\right)+B(\boldsymbol{\theta}) \rho_{b}\left(\mathbf{x}^{i}\right)}{S(\lambda, \boldsymbol{\theta})+B(\boldsymbol{\theta})}
$$

Evaluate test statistics in the large sample limit

$$
\begin{aligned}
& t_{\lambda}=-2 \ln \frac{\mathcal{L}\left(\text { data } \mid \lambda, \hat{\boldsymbol{\theta}}_{\lambda}\right)}{\mathcal{L}(\text { data } \mid \hat{\lambda}, \hat{\boldsymbol{\theta}})} \\
& t_{\lambda} \xrightarrow{N \rightarrow \infty}-2 \ln \frac{\operatorname{Poisson}(N \mid S(\lambda)+B)}{\text { Poisson }(N \mid B)}+2 N \int \operatorname{d} \mathbf{x} \rho(\mathbf{x} \mid \lambda=0) \ln \frac{\rho(\mathbf{x} \mid \lambda=0)}{\rho(\mathbf{x} \mid \lambda)} \\
&=-2 \ln \frac{\text { Poisson }(N \mid S(\lambda)+B)}{\text { Poisson }(N \mid B)}+2 N \cdot D(\rho(\mathbf{x} \mid \lambda=0) \| \rho(\mathbf{x} \mid \lambda)) .
\end{aligned}
$$

Dual integration

- Integrate over the invisible part
- Evaluate the KL divergence term

Background modeling and

event selections

Consider the same selections as in the 13 TeV CMS measurement:

Distributions distorted by selections. Shown for background only hypothesis JHEP 03 (2017) 061

Selections implemented in numerical integration (BL-selections):

Variable	Requirements
p_{T}^{l}	$>20 \mathrm{GeV}$
s_{Z}	NWA
$E_{\mathrm{T}}^{\mathrm{miss}}$	$>80 \mathrm{GeV}$
$\left\|\eta_{l}\right\|$	<2.4
$\Delta R_{l l}$	>0.4
$\left\|y_{\mathrm{Z}}\right\|$	<2.5

A_{2} in the Collins-Soper frame

Other selection effects are included through an ancillary $A \cdot \epsilon$ factor.
Event rate corresponds to 13 TeV LHC with $150 \mathrm{fb}^{-1}$ data.

	Process			
Matrix Element	Cross section with BL-selections (fb)	Ancillary $A \cdot \epsilon$	Events	
	$\mathrm{ZZ} \rightarrow 2 l 2 \nu$	27.7	0.488	2028
Phase space	Non-resonant-ll	1.57×10^{3}	5.80×10^{-3}	1370
Matrix Element	$\mathrm{WZ}(\rightarrow e \nu 2 l)$	17.05	0.296	757
Matrix Element	$\mathrm{Z} / \gamma^{*} \rightarrow l^{+} l^{-}$	3.61×10^{4}	1.23×10^{-4}	665

Seting linitis on the coupting stiength paraneters

Upper limits on the coupling strength parameters of the SO benchmark scenarios.

Upper limits on the coupling strength parameters of the SO benchmark scenarios.

. Simplified dark sector models with scalar, vector, and tensor mediators have different signatures in the distribution of AO-A4.
I Angular coefficients can be used to distinguish different scenarios of the spin- 0 and spin- 1 models, including the ones with P - and CP -odd operators.

- Shape differences provide significant improvements in the limits, especially for the scalar mediator models.
- Example Matrix Element Kinetic Discriminator results available in a new version of the paper.
- W boson leptonic decay channel

