Presentation based on arXiv:1711.09845 [hep-ph]

- Coauthored with Qiang Li
- With special thanks to Kaoru Hagiwara

Probing the Dark Sector through Mono-Z Boson Leptonic decays

Daneng Yang
School of Physics, Peking University

The Third China LHC Physics Workshop, Dec 22nd-24th, 2017 Nanjing University, Nanjing

Background

Measuring angular coefficients of high pT Z boson leptonic decays

Z boson pT balanced by jets Z boson pT balanced by missing energy

Recent experimental results on the angular coefficients of Z boson leptonic decays at the LHC

Nice agreement!

CMS: Phys. Lett. B 750 (2015) 154 **ATLAS**: [HEP08(2016)159

Order in QCD

0th A4 only, from qqbar->Z 1st A0-A4, Lam-Tung relation: A0=A2 2nd A0-A7, all appear

Comparing the measured angular coefficients and the parton level predictions (L.O.)

- The Z boson e/mu decays have very clean signatures
- QCD corrections to angular coefficients are very small

Angular coefficients in the Collins-Soper frame

$$\frac{d\sigma}{dq_{T}dy_{Z}ds_{Z}d\cos\theta d\phi} = \left(\int d\cos\theta d\phi \frac{d\sigma}{dq_{T}dy_{Z}ds_{Z}d\cos\theta d\phi}\right) \frac{3}{16\pi}$$

$$\left\{ (1 + \cos^{2}\theta) + \frac{1}{2}A_{0}(1 - 3\cos^{2}\theta) + A_{1}\sin 2\theta\cos\phi + \frac{1}{2}A_{2}\sin^{2}\theta\cos 2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta \right\}$$

Recent experimental results on the angular coefficients of Z boson leptonic decays at the LHC

ATLAS: JHEP08(2016)159

CMS: Phys. Lett. B 750 (2015) 154

Order in QCD

0th A4 only, from qqbar->Z

1st A0-A4,

Lam-Tung relation: A0=A2 2nd A0-A7, all appear

Comparing the measured angular coefficients and the parton level predictions (L.O.)

Nice agreement!

- The Z boson e/mu decays have very clean signatures
- QCD corrections to angular coefficients are very small

Angular coefficients in the Collins-Soper frame

$$\frac{d\sigma}{dq_{T}dy_{Z}ds_{Z}d\cos\theta d\phi} = \left(\int d\cos\theta d\phi \frac{d\sigma}{dq_{T}dy_{Z}ds_{Z}d\cos\theta d\phi}\right) \frac{3}{16\pi}$$

$$\left\{ (1 + \cos^{2}\theta) + \frac{1}{2}A_{0}(1 - 3\cos^{2}\theta) + A_{1}\sin 2\theta\cos\phi + \frac{1}{2}A_{2}\sin^{2}\theta\cos 2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta \right\}$$

Parametrization of the lepton angular distribution

Measuring angular coefficients of high pT Z boson leptonic decays

Z boson pT balanced by jets Z boson pT balanced by missing energy

Parametrization of the lepton angular distribution

We parametrize the phase space such that the visible part is $\mathbf{x} = (y_{\mathbf{Z}}, q_{\mathbf{T}}, \cos \theta_{CS}, \phi_{CS})$ and the invisible part is $(y_{\mathbf{Y}}, s_{\mathbf{Y}}, \cos \theta_{\chi}, \phi_{\chi})$

$$\begin{split} \int \mathrm{d}\Phi_{4}(k_{l},k_{l},k_{\chi},k_{\bar{\chi}}) &= \int \frac{\mathrm{d}s_{Z}}{2\pi} \frac{\mathrm{d}s_{\chi}}{2\pi} \int \mathrm{d}\Phi'_{2}(p_{Y},p_{Z}) \mathrm{d}\Phi_{2}(k_{l},k_{l}) \mathrm{d}\Phi_{2}(k_{\chi},k_{\bar{\chi}}), \\ \int \mathrm{d}\Phi'_{2}(p_{Y},p_{Z}) &= \int \frac{\mathrm{d}^{3}p_{Z}}{(2\pi)^{3}2p_{Z}^{0}} \frac{\mathrm{d}^{3}p_{Y}}{(2\pi)^{3}2p_{Y}^{0}} (2\pi)^{4}\delta^{4}(p_{1}+p_{2}-p_{Z}-p_{Y}), \\ &= \frac{1}{4\pi s} \int \underbrace{\mathrm{d}y_{Z}\mathrm{d}y_{Y}\mathrm{d}q_{\Gamma}} q_{\Gamma} \\ \delta(x_{1} - \frac{x_{T,Z}}{2}\mathrm{e}^{y_{Z}} - \frac{x_{T,Y}}{2}\mathrm{e}^{y_{Y}})\delta(x_{2} - \frac{x_{T,Z}}{2}\mathrm{e}^{-y_{Z}} - \frac{x_{T,Y}}{2}\mathrm{e}^{-y_{Y}}) \\ \int \mathrm{d}\Phi_{2}(k_{1},k_{2}) &= \frac{1}{8\pi} \bar{\beta}(\frac{\mathrm{m}_{1}^{2}}{s_{12}}, \frac{\mathrm{m}_{2}^{2}}{s_{12}}) \frac{\mathrm{d}\cos\theta}{2} \frac{\mathrm{d}\phi}{2\pi}, \\ \bar{\beta}(a,b) &= \sqrt{\lambda(1,a,b)} = \sqrt{1+a^{2}+b^{2}-2a-2b-2ab}. \end{split}$$

 x_1, x_2 fixed through delta functions

- The z-axis is defined as the bisector of the angle θ_{12} between $\mathbf{p_1}$ and $-\mathbf{p_2}$.
- $\tan \frac{\theta_{12}}{2} = \frac{q_T}{\sqrt{s_Z}}$, $q_T \equiv |\mathbf{q}_T|$:
 - θ_{12} independent of longitudinal boost
 - Minimize the impact of incoming quark transverse momentum
- Rotate around the x-axis by π for events with $y_Z < 0$:
 - Avoid possible dilutions by the initial states swapped processes
 - Angular coefficients have symmetric y_Z distributions

Parametrization of the lepton angular distribution

We consider the Z boson decay as a probe of the underlying production structure with a narrow width approximation.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y_{\mathrm{Z}}\mathrm{d}q_{\mathrm{T}}\mathrm{d}s_{\mathrm{Y}}\mathrm{d}\Phi_{2}(k_{\chi},k_{\bar{\chi}})\mathrm{d}\cos\theta\mathrm{d}\phi} = \frac{\mathrm{d}\sigma_{P}}{\mathrm{d}y_{\mathrm{Z}}\mathrm{d}q_{\mathrm{T}}\mathrm{d}s_{\mathrm{Y}}\mathrm{d}\Phi_{2}(k_{\chi},k_{\bar{\chi}})} \cdot \mathrm{Br}(\mathrm{Z} \to l^{+}l^{-}) \cdot 3\sum_{s,s'} \rho_{ss'}^{\mathrm{P}} \rho_{ss'}^{\mathrm{D}} \rho_{ss'}^{\mathrm{P}} \rho_{ss'}^{\mathrm{D}}$$

$$\operatorname{Tr} \rho^{\mathrm{P}} = \int_{\mathcal{R}} d\Phi_{2}'(p_{\mathrm{Y}}, p_{\mathrm{Z}}) d\Phi_{2}(k_{\chi}, k_{\bar{\chi}}) \sum_{a,b} f_{a}(x_{1}, \mu_{\mathrm{F}}) f_{b}(x_{2}, \mu_{\mathrm{F}}) \frac{1}{2\hat{s}} \overline{\sum_{\mathrm{ext}}} \sum_{s} |\mathcal{M}_{s}|^{2},$$

$$\boxed{\rho_{ss'}^{P}} = \frac{1}{\text{Tr}\rho^{P}} \int_{\mathcal{R}} d\Phi_{2}'(p_{Y}, p_{Z}) d\Phi_{2}(k_{\chi}, k_{\bar{\chi}}) \sum_{a,b} f_{a}(x_{1}, \mu_{F}) f_{b}(x_{2}, \mu_{F}) \frac{1}{2\hat{s}} \overline{\sum_{\text{ext}}} \mathcal{M}_{s} \mathcal{M}_{s'}^{*}$$

$$\rho_{ss'}^{P,CS} = \sum_{\alpha,\beta} d_{\alpha s}^{J=1}(-\omega) d_{\beta s'}^{J=1}(-\omega) \rho_{\alpha \beta}^{P,HEL}$$

$$\cos \omega = \frac{2\sqrt{\tau_{\rm Z}} \sinh y_{\rm Z}}{\sqrt{x_{\rm T,Z}^2 \cosh^2 y_{\rm Z} - 4\tau_{\rm Z}}},$$

- Analytic implementation (ALOHA generated HELAS subroutines): allows application of matrix element method (MEM).
- All evaluated angular coefficients checked with toy measurements based on MadGraph5 generated events.

Parameter	Value
$\sin^2 \theta_W$	0.23129
$1/\alpha$	127.95
m_{Z}	91.1876 GeV
$\Gamma_{\! m Z}$	2.4952 GeV
$\alpha_{\scriptscriptstyle S}$	0.13 (NNPDF 23)
m_W	${ m m_Zcos} heta_W$
$Br(Z\rightarrow ll), l=e, \mu$	6.73%
μ_F	$E_T = \sqrt{s_Z + q_T^2}$

Angular coefficients

We will show $y_Z - q_T$ distributions of A_{0-4} in different scenarios

$$\frac{d\sigma}{dq_{T}dy_{Z}ds_{Z}d\cos\theta d\phi} = \left(\int d\cos\theta d\phi \frac{d\sigma}{dq_{T}dy_{Z}ds_{Z}d\cos\theta d\phi}\right) \frac{3}{16\pi}$$

$$\left\{ (1 + \cos^{2}\theta) + \frac{1}{2}A_{0}(1 - 3\cos^{2}\theta) + A_{1}\sin 2\theta\cos\phi + \frac{1}{2}A_{2}\sin^{2}\theta\cos 2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta \right\}$$

Angular coefficients with dark sector models

- SM ZZ→21 2v background
- □ Spin-0 mediator
- □ Spin-l mediator
- □ Spin-2 mediator

Spin-0 models

$$\begin{split} \mathcal{L}_{SMEW}^{Y_0} &= \frac{1}{\Lambda} g_{h3}^S (D^\mu \phi)^\dagger (D_\mu \phi) Y_0 \\ &+ \frac{1}{\Lambda} B_{\mu\nu} \left(g_B^S B^{\mu\nu} + g_B^P \tilde{B}^{\mu\nu} \right) Y_0 + \frac{1}{\Lambda} W_{\mu\nu}^i \left(g_W^S W^{i,\mu\nu} + g_W^P \tilde{W}^{i,\mu\nu} \right) Y_0, \\ \mathcal{L}_X^{Y_0} &= \mathrm{m}_{XC} g_{XC}^S \chi_C^* \chi_C Y_0 + \bar{\chi}_D (g_{XD}^S + i g_{XD}^P \gamma_5) \chi_D Y_0, \end{split}$$

Benchmark	$S0_a$	$S0_b$	$S0_c$
$g_{X_D}^S$	1	0	0
$g_{X_D}^P$	0	1	0
$\frac{g_{X_C}^S}{g_W^S}$	0	0	1
g_W^S	0.25	0	0
g_W^P	0	0.25	0
g_{h3}^S	0	0	1
$\Lambda~({ m GeV})$	3000	3000	3000
Interaction	CP-even	CP-odd	CP-even
$m_{\chi} \; (GeV)$	10	10	10
$m_{Y_0} (GeV)$	1000	1000	1000
Γ_{Y_0} (GeV)	41.4	41.4	1.05
Cross section (fb)	0.0103	0.00977	2.98e-08

Spin-1 models

$$\begin{split} \mathcal{L}_{X_{D}}^{Y_{1}} &= \bar{\chi}_{D} \gamma_{\mu} \left(g_{X_{D}}^{V} + g_{X_{D}}^{A} \gamma_{5} \right) \chi_{D} Y_{1}^{\mu} \\ \mathcal{L}_{SM}^{Y_{1}} &= \bar{d}_{i} \left(g_{d_{ij}}^{V} + g_{d_{ij}}^{A} \gamma_{5} \right) d_{j} Y_{1}^{\mu} + \bar{u}_{i} \left(g_{u_{ij}}^{V} + g_{u_{ij}}^{A} \gamma_{5} \right) u_{j} Y_{1}^{\mu} \end{split}$$

Benchmark	$S1_a$	$S1_b$	$S1_c$	S10
	Spin independent	Right handed	Left handed	SM (ZZ $\rightarrow 2l2\nu$
$g_{X_D}^V$ $g_{X_D}^A$ $g_{X_C}^V$ g_u^V	1	$1/\sqrt{2}$	$1/\sqrt{2}$	-
$g_{X_D}^A$	0	$1/\sqrt{2}$	$-1/\sqrt{2}$	-
$g_{X_C}^V$	0	0	0	-
g_u^V	0.25	$\sqrt{2}/8$	$\sqrt{2}/8$	-
g_u^A	0	$\sqrt{2}/8$	$-\sqrt{2}/8$	-
g_d^V	0.25	$\sqrt{2}/8$	$\sqrt{2}/8$	-
g_d^A	0	$\sqrt{2}/8$	$-\sqrt{2}/8$	-
$m_{\chi} \; (GeV)$	10	10	10	-
m_{Y_1} (GeV)	1000	1000	1000	-
$\Gamma_{Y_1} \; ({ m GeV})$	56.3	55.9	55.9	-
Cross section (fb)	2.50	0.533	4.50	239

Spin-2 models

$$\mathcal{L}_X^{Y_2} = -\frac{1}{\varLambda} g_X^T \, T_{\mu\nu}^X Y_2^{\mu\nu}$$

$$\mathcal{L}_{\mathrm{SM}}^{Y_2} = -\frac{1}{\varLambda} \sum_i g_i^T T_{\mu\nu}^i Y_2^{\mu\nu}$$

- JHEP 02 (2016) 082
- Report of the ATLAS/CMS Dark Matter Forum, 1507.00966
- Eur. Phys. J. C77 (2017) 326

Benchmark	$S2_a$	$S2_b$	$S2_c$
$g_{X_D}^T$	1	0	0
$g_{X_R}^T$	0	1	0
$g_{X_V}^T$	0	0	1
g_{SM}^T	1	1	1
$m_{\chi} (GeV)$	10	10	10
$m_{Y_2} (GeV)$	1000	1000	1000
Λ	3000	3000	3000
$\Gamma_{Y_2} \; ({\rm GeV})$	95.3	93.7	97.7
Cross section (fb)	2.73	0.0462	0.578
	•		

$y_Z - q_T$ differential cross section

Spin-2 mediator

Spin-1 mediator (a-c)

A0 in the $y_Z - q_T$ plane

Al in the $y_Z - q_T$ plane

Distributions look similar Exception: Al in S0c = 0

A2 in the $y_Z - q_T$ plane

Sensitive to spin-0 models

Spin-2 signature similar but different from the one of the spin-1 model

A3 in the $y_Z - q_T$ plane

A4 in the $y_Z - q_T$ plane

Visible part: $\mathbf{x} = (y_{\rm Z}, q_{\rm T}, \cos \theta_{CS}, \phi_{CS})$

Invisible part (integrated): $(y_Y, s_Y, \cos \theta_\chi, \phi_\chi)$

Setting limits on the coupling strength parameters

- Benchmark scenarios S0a, S0b, S0c
- □ Benchmark scenarios Sla, Slb, Slc

Setting limits on the coupling strength parameters

We exploit a dynamically constructed matrix element based likelihood function to set limits on the coupling strength parameters:

$$\rho(\mathbf{p}^{\text{vis}}|\lambda) = \frac{1}{\sigma_{\lambda}} \sum_{a,b} \int dx_1 dx_2 f_a(x_1, \mu_F) f_b(x_2, \mu_F) \int d\Phi \frac{d\hat{\sigma}}{d\Phi} \prod_{i \in \text{vis}} \delta(\mathbf{p}_i - \mathbf{p}_i^{vis})$$

Visible part:

$$\mathbf{x} = (y_{\rm Z}, q_{\rm T}, \cos \theta_{CS}, \phi_{CS})$$

Invisible part (integrated):

$$(y_{\rm Y}, s_{\rm Y}, \cos \theta_{\chi}, \phi_{\chi})$$

An unbinned likelihood fit is performed to extract limit

$$\mathcal{L}(\text{data}|\lambda, \boldsymbol{\theta}) = \text{Poisson}(N|S(\lambda, \boldsymbol{\theta}) + B(\boldsymbol{\theta}))\rho(\boldsymbol{\theta}) \prod_{i} \rho(\mathbf{x}^{i}|\lambda, \boldsymbol{\theta}),$$

$$\rho(\mathbf{x}|\lambda,\boldsymbol{\theta}) = \frac{S(\lambda,\boldsymbol{\theta})\rho_s(\mathbf{x}^i,\lambda) + B(\boldsymbol{\theta})\rho_b(\mathbf{x}^i)}{S(\lambda,\boldsymbol{\theta}) + B(\boldsymbol{\theta})},$$

Evaluate test statistics in the large sample limit

$$t_{\lambda} = -2 \ln \frac{\mathcal{L}(\text{data}|\lambda, \hat{\boldsymbol{\theta}}_{\lambda})}{\mathcal{L}(\text{data}|\hat{\lambda}, \hat{\boldsymbol{\theta}})}$$

λ scales couplings of the dark mediator to the dark matter and the SM particles at the same time

- Integrate over the invisible part
- Evaluate the KL divergence term

Setting limits on the coupling strength parameters

Background modeling and event selections

Consider the same selections as in the 13 TeV CMS measurement:

JHEP 03 (2017) 061

Selections implemented in numerical integration (BL-selections):

Requirements
> 20 GeV
NWA
> 80 GeV
< 2.4
> 0.4
< 2.5

Distributions distorted by selections. Shown for background only hypothesis

Other selection effects are included through an ancillary $A\cdot\epsilon$ factor. Event rate corresponds to 13 TeV LHC with 150 fb^{-1} data.

Matrix Element
Phase space
Matrix Element
Matrix Element

Process	Cross section with BL-selections (fb)	Ancillary $A \cdot \epsilon$	Events
${ m ZZ}{ ightarrow}~2l2 u$	27.7	0.488	2028
Non-resonant- ll	1.57×10^3	5.80×10^{-3}	1370
$WZ(\rightarrow e\nu 2l)$	17.05	0.296	757
$Z/\gamma^* \to l^+l^-$	3.61×10^4	$1.23{ imes}10^{-4}$	665

Setting limits on the coupling strength parameters

S1a

Upper limits on the coupling strength parameters of the SO benchmark scenarios.

Upper limits on the coupling strength parameters of the SO benchmark scenarios.

S1_b

S1_c

Summary and outlook

- Simplified dark sector models with scalar, vector, and tensor mediators have different signatures in the distribution of AO-A4.
- Angular coefficients can be used to distinguish different scenarios of the spin-0 and spin-1 models, including the ones with P- and CP-odd operators.
- ☐ Shape differences provide significant improvements in the limits, especially for the scalar mediator models.
 - Example Matrix Element Kinetic Discriminator results available in a new version of the paper.
 - W boson leptonic decay channel

Thanks for your attention!