Triple Gauge-Boson Final States and Limits on Anomalous Quartic Gauge Couplings with the ATLAS Detector

Bing Li On behalf of the ATLAS Collaboration

The University of Michigan, University of Science and Technology of China

> CLHCP 2017, Nanjing, China Dec. 22 to 24, 2017

Outline

- Physics motivation
- VBS final states
 - * Covered in Bo Liu's talk
- Tri-boson final states
 - * WWW
 - * WV γ (V = W, Z)
- Summary

* Results with 20.2 fb⁻¹, 8 TeV dataset

Physics Motivation

- Vector Boson Scattering (VBS) is a key process to probe the mechanism of electroweak symmetry breaking (EWSB)
- Triboson final states provide another way to test QGC vertex
- Involving Quartic Gauge Couplings (QGCs)
 which are sensitive to new physics
 - * Only charged QGCs allowed at Standard Model (SM) tree-level (WWWW, WWZZ, WWZγ, WWγγ)
 - * Constraint on aQGCs (anomalous QGCs)
 - * Probe new physics through deviations from SM

Triboson: WWW

 $W^{\pm}W^{\pm}W^{\mp} \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu\ell^{\mp}\nu$ and $W^{\pm}W^{\pm}W^{\mp} \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu jj$

WWW: Event Selections

IvIvIv: split based on number of same-flavor, opposite-sign lepton (SFOS) pairs

0 SFOS	1 SFOS	2 SFOS	
Exactly three	charged leptons with	p _T > 20 GeV	
	$ \Phi^{3I} - \Phi p_T^{miss} > 2.5$		
Z boson veto (differe	nt mass window depe	ending on channels)	
L	let veto and b-jet veto		
m _{II} > 20 GeV	$E_T^{miss} > 45 \text{ GeV}$	$E_T^{miss} > 55 \text{ GeV}$	
lvlvjj: split ba	ased on lepton flavor		
e [±] e [±]	e±µ±		μ±μ±
Exactly tw	o same-charge lepton	s with $p_T > 30 \text{ GeV}$	
At least two	o jets with p _T > 30/20	GeV and η < 2.5	
m _{II} > 40 Ge	eV, 65 < mjj < 105 Ge	V and dŋ(jj) < 1.5	
E _T ^{miss} >	> 55 GeV		
Z boson veto			
	No third lepton and r	no b-jets	
	1	-	

WWW: Background Estimation

- Background with prompt leptons estimated using simulated events
 - * WZ/ γ * + jets, diboson, other triboson, $t\bar{t}V_{\pm}$
- Charge-flip background (occurs primarily from hard bremsstrahlung photon conversion)
 - * Charge-flip rate estimated using $Z \rightarrow ee$ events
- Fake background
 - * IvIvIv: estimated with tag-and-probe method
 - * "Tag" lepton to identify the event
 - "Probe" lepton to study the probabilities of prompt or non-prompt leptons to satisfy the signal lepton selections
 - Ivlvjj: fake factors calculated with events containing one signal lepton and one "lepton-like" jet

WWW: Systematics

Source of uncertainty	lvlvlv		lvlvjj		
	Signal (%)	Background (%)	Signal (%)	Backg	round (%)
Lepton ID, E_T/p_T scale and resolution	1.6	1.8	2.1	3.3	
$E_{\rm T}^{\rm miss}$ modelling	1.1	1.4	0.7	1.8	Dominant systematics from jet
<i>b</i> -jet identification	0.3	0.3	2.2	2.2	energy scale and resolution, and
Jet $E_{\rm T}$ scale and resolution	2.3	2.8	21	15	Take-lepton background
Fake-lepton background	0	13	0	8	
Charge-flip background	0	0.04	0	2.2	
Luminosity	1.9	1.6	1.9	1.4	
Pile-up estimate	1.1	0.6	0.6	1.6	
Trigger efficiency	0.1	0.1	0.1	0.01	
Normalization factor	3.8	8	6.0	13	
Statistical	1.2	3.2	2.7	5.1	

WWW: Cross-section Measurements

- Prediction agrees with observed data in all 6 signal regions
- Observed (expected) significance of a positive signal is 0.96σ (1.05σ), combining all channels (mostly from 0-SFOS and μμ channel)

 ✓ Contributions from aQGCs also shown in plots
 ✓ Non-unitarized case (Λ_{FF} = ∞) shown here as example

✓ Two different sets of $f_{S,0}/\Lambda^4$ and $f_{S,1}/\Lambda^4$ configurations

Fiducial

 $\ell \nu \ell \nu \ell \nu$

lvlvjj

Total

WWW: aQGCs

 aQGC events generated with VBFNLO at LO and scaled to NLO prediction

Eur. Phys. J. C 77 (2017) 141

Triboson: WV γ (V = W, Z)

Produced through QGC

Produced through radiation

Fully leptonic channel (WWy only) and semi-leptonic channel

- ✓ Dominant background for leptonic channel: $t\bar{t}\gamma$
- ✓ Dominant background for semi-leptonic channel: $W\gamma^*$ + jets

Eur. Phys. J. C 77 (2017) 646

WVy: Event Selections

ενμνγ	lvjjγ
1 electron and 1 muon Opposite charge	1 electron or 1 muon
No 3 rd lepton	No 2 nd lepton
At least 1 iso	lated photon
0 jet	At least 2 jets, 0 b-jet
Missing E _T > 15 GeV m _{eµ} > 50 GeV	Missing E _T > 30 GeV m _T > 30 GeV

Fully leptonic channel

- ✓ Only eµ channel
- Same-flavor channels are not included as they have large background

Semileptonic channels

- Profits from larger hadronic branching ratio of W/Z decays
- ✓ T channel not included

WVy: Background Estimation

evµvγ: signal region		Semileptonic cha	Semileptonic channel: signal region				
Process	Events	Process	Electron Channel	Muon Channel			
$t\overline{t}\gamma$ $Z\gamma$ $WZ\gamma$ Fake γ from e Fake γ from jets	$4.1 \pm 1.9 \\ 2.7 \pm 1.2 \\ 2.7 \pm 0.6 \\ \underline{2.3 \pm 0.6} \\ 1.7 + 3.3 \\ -1.4$	$W\gamma$ + jets Fake γ from jets Fake ℓ from jets $t\bar{t}\gamma$ Fake γ from e	324 ± 11 82 ± 7 57 ± 6 35 ± 6 33 ± 12	$407 \pm 11 \\ 117 \pm 9 \\ 27 \pm 5 \\ 46 \pm 7 \\ 3 \pm 1 \\ 20 = 20$			
$\frac{WW\gamma}{V\tau} (\tau \text{ contribution})$ Wt	1.0 ± 0.1 0.3 ± 0.1	$Z\gamma$ + jets $WV\gamma$ (τ contribution)	$19 \pm 4 < 1$	20 ± 3 < 1			
ZZ Fake μ from jets Fake e from jets	$0.2 \pm 0.1 \\ 0.1 \pm 0.1 \\ 0.0 ^{+0.6}_{-0.0}$	Total background Expected signal Data	552 ± 38 14 ± 2 490	621 ± 31 18 ± 2 599			
Total background Expected signal Data	15.1 ± 4.1 12.2 ± 1.1 26	Estimated with 2D side Others directly from sin	band method nulation, or with s	simultaneous f			

nannel: signal region

WVy: Cross-section Measurements

Eur. Phys. J. C 77 (2017) 646

✓ Fiducial cross section measured in fully leptonic channel

 \checkmark Expected significance: 1.6 σ

✓ Observed significance: 1.4σ

December 20, 2017

 $W_{\gamma+jets}$

WVγ

Fake γ from jets

Fake *e* from jets

Total uncertainty

•••••• $f_{\tau,0} / \Lambda^4 = 1374 \text{ TeV}$

Other backgrounds

 $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$

evijy signal region

10⁴

 10^{3}

 10^{2}

10

Events /

WVy: aQGCs

* Optimized fiducial region defined for aQGCs and search for new physics by increasing photon E_T cut ($E_T > 120$ GeV for fully leptonic analysis, $E_T > 200$ GeV for semi-leptonic analysis)

Upper limits		$E_{\rm T}^{\gamma}$ threshold	Observed	Expected	SM Prediction
		[GeV]	limit [fb]	limit [fb]	$\sigma_{ m theo}~[m fb]$
Fully leptonic	<i>eνμνγ</i>	120	0.3	$0.3^{+0.3}_{-0.1}$	0.076 ± 0.004
	evjjγ	200	1.3	$1.3^{+0.5}_{-0.3}$	0.057 ± 0.013
Semileptonic {	μν ј јγ	200	1.1	$1.1^{+0.5}_{-0.3}$	0.051 ± 0.011
	<i>lvjj</i> γ	200	0.9	$0.9^{+0.3}_{-0.2}$	0.054 ± 0.009

Summary

- Recent ATLAS results for Triboson and aQGCs
- Limit set on cross-sections and compared with NLO SM predictions
- Limits set on aQGC parameters parameterized by dimension-8 operators

 Will benefit from Run 2 data for Triboson cross-section measurements and aQGC limits

backup

aQGC

 Effective operators approach 		$\mathcal{O}_{S,0},$	$\mathcal{O}_{M,0},$	$\mathcal{O}_{M,2},$ $\mathcal{O}_{M,2}$	$\mathcal{O}_{T,0},$	$\mathcal{O}_{T,5},$	\mathcal{O}_{T} o
$\mathcal{L}_{ ext{EFT}} = \mathcal{L}_{ ext{SM}} + \sum \sum rac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$		$\mathcal{O}_{S,1},$ $\mathcal{O}_{S,2}$	$\mathcal{O}_{M,1},$ $\mathcal{O}_{M,7}$	${\mathcal O}_{M,3}, \ {\mathcal O}_{M,4}, \ {\mathcal O}_{M,5}$	$\mathcal{O}_{T,1},$ $\mathcal{O}_{T,2}$	$\mathcal{O}_{T,6},$ $\mathcal{O}_{T,7}$	$\mathcal{O}_{T,9}$
d>4 i	WWWW	Х	Х		Х		
Three types of dimension Q energtors	WWZZ	Х	Х	Х	Х	Х	
* Three types of unnension-o operators	ZZZZ	Х	Х	Х	Х	Х	Х
* Scalar: S0, S1, S2	$WWZ\gamma$		Х	Х	Х	Х	
	$WW\gamma\gamma$		Х	Х	Х	Х	
* Tensor: TU – T9	$ZZZ\gamma$		Х	Х	Х	Х	Х
* Mixed: MO – M7	$ZZ\gamma\gamma$		Х	Х	Х	Х	Х
	$Z\gamma\gamma\gamma\gamma$				Х	Х	Х
Michael Rauch, arxiv:1610.08420	$\gamma\gamma\gamma\gamma\gamma$				Х	Х	Х
<u>O. J. P. Eboli, M. C. Gonzalez-Garcia, arXiv:1604.03555</u>							

WWW: Event Selections

Split based on r	plit based on number of same-flavor, opposite-sign lepton (SFOS) pairs							
lvlvlv	0 SFOS	1 SFOS	2 SFOS					
Preselection	Exactly three charged leptons	with $p_{\rm T} > 20 {\rm ~GeV}$						
$E_{\mathrm{T}}^{\mathrm{miss}}$	_	$E_{\rm T}^{\rm miss} > 45~{\rm GeV}$	$E_{\rm T}^{\rm miss} > 55~{ m GeV}$					
Same-flavour dilepton mass	$m_{\ell\ell} > 20 \text{ GeV}$		-					
Angle between trilepton and $\vec{p}_{\rm T}^{\rm miss}$		$ \phi^{3\ell} - \phi^{\vec{p}_{\mathrm{T}}^{\mathrm{miss}}} > 2.5$						
Z boson veto	$ m_{ee} - m_Z > 15 \text{ GeV}$	$m_Z - m_{\rm SFOS} > 35 { m GeV}$	$ m_{\rm SFOS} - m_Z > 20 {\rm GeV}$					
		or						
		$m_{\rm SFOS} - m_Z > 20 { m GeV}$						
Jet veto	At most one jet with $p_{\rm T} > 25$	GeV and $ \eta < 4.5$						
<i>b</i> -jet veto	No identified b -jets with p_T >	> 25 GeV and $ \eta < 2.5$						

Split based on lepton flavor

lvlvjj	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$
Lepton	Exactly two same-charge leptons with $p_{\rm T}$	> 30 GeV	
Jets	At least two jets with $p_T(1) > 30$ GeV, p_T	$\Gamma(2) > 20$ GeV and $ \eta <$	2.5
$m_{\ell\ell}$	$m_{\ell\ell} > 40 \text{ GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 55 { m GeV}$		-
m_{jj}	6	$55 \text{ GeV} < m_{jj} < 105 \text{ GeV}$	V
$\Delta \eta_{jj}$		$ \Delta \eta_{jj} < 1.5$	
Z boson veto	$m_{ee} < 80 \text{ GeV} \text{ or } m_{ee} > 100 \text{ GeV}$	_	
Third-lepton veto	No third lepton with $p_{\rm T} > 6$ GeV and $ \eta $	< 2.5 passing looser ider	ntification requirements
<i>b</i> -jet veto	No identified <i>b</i> -jets with $p_{\rm T} > 25$ GeV and	d $ \eta < 2.5$	

Same-sign channel has much better Drell-Yan suppression

WVy: Event Selections

	<i>ενμνγ</i>	ℓvjjγ
Leptons	1 electron and 1 muon $p_{\rm T} > 20 {\rm GeV}$ no 3 rd lepton ($p_{\rm T} > 7 {\rm GeV}$) $ \eta < 2.5$ opposite charge leptons $\Delta R(\ell, \ell) > 0.1$	1 electron or 1 muon $p_{\rm T} > 25 {\rm GeV}$ no 2 nd lepton ($p_{\rm T} > 7 {\rm GeV}$) $ \eta < 2.5$
Photon	$\geq 1 \text{ isolat}$ $E_{\rm T} >$ isolation frac $ \eta <$ $\Delta R(\ell, \gamma)$	ted photon 15 GeV ction $\epsilon_h^p < 0.5$ (2.37) (y) > 0.5
Jets	$N_{jets} = 0$ $p_T > 25 \text{ GeV}$ y < 4.4 $\Delta R(jet, \gamma) > 0.5$ $\Delta R(jet, \ell) > 0.3$	$\begin{split} N_{\text{jets}} &\geq 2 \text{ and } N_{b\text{-jets}} = 0 \\ p_{\text{T}} &> 25 \text{ GeV} \\ & \eta < 2.5 \\ & \Delta \eta_{jj} < 1.2 \\ &\Delta R_{jj} < 3.0 \\ \hline 70 \text{ GeV} &< m_{jj} < 100 \text{ GeV} \\ &\Delta R(\text{jet}, \gamma) > 0.5 \\ &\Delta R(\text{jet}, \ell) > 0.3 \end{split}$
W boson	$E_{\text{T, rel}}^{\text{miss}} > 15 \text{GeV}$ $m_{e\mu} > 50 \text{GeV}$	$E_{\rm T}^{\rm miss} > 30 {\rm GeV}$ $m_{\rm T} > 30 {\rm GeV}$

WVγ: 2D sideband method

CMS limit

<u>CMS-PAS-SMP-13-009</u>

Observed Limits	Expected Limits
$-77 (\text{TeV}^{-4}) < f_{M,0} / \Lambda^4 < 81 (\text{TeV}^{-4})$	-89 (TeV $^{-4}$) < f _{M,0} / Λ^4 < 93 (TeV $^{-4}$)
-131 (TeV $^{-4}$) < f _{M,1} / Λ^4 < 123 (TeV $^{-4}$)	-143 (TeV $^{-4}$) < $f_{M,1}/\Lambda^4$ < 131 (TeV $^{-4}$)
$-39 (\text{TeV}^{-4}) < f_{M,2} / \Lambda^4 < 40 (\text{TeV}^{-4})$	-44 (TeV $^{-4}$) < f _{M,2} / Λ^4 < 46 (TeV $^{-4}$)
-66 (TeV $^{-4}$) < f _{M,3} / Λ^4 < 62 (TeV $^{-4}$)	-71 (TeV $^{-4}$) < f _{M,3} / Λ^4 < 66 (TeV $^{-4}$)

ATLAS/CMS limit

May 2017	CMS ATLAS	Channel	Limits	∫Ldt	ls
f_{M0}/Λ^4	H	WVγ	[-7.7e+01, 8.1e+01]	19.3 fb ⁻¹	8 TeV
,.	н	Zγ	[-7.1e+01, 7.5e+01]	19.7 fb ⁻¹	8 TeV
	н	Ŵγ	[-7.7e+01, 7.4e+01]	19.7 fb ⁻¹	8 TeV
	н	ss WW	[-3.3e+01, 3.2e+01]	19.4 fb ⁻¹	8 TeV
	1 () () () () () () () () () (ss WW	[-6.0e+00, 5.9e+00]	35.9 fb ⁻¹	13 TeV
	н	γγ→WW	[-2.8e+01, 2.8e+01]	20.2 fb ⁻¹	8 TeV
	1	γγ→WW	[-4.2e+00, 4.2e+00]	24.7 fb ⁻¹	7,8 TeV
$f_{M,1}/\Lambda^4$	H-1	WVγ	[-1.3e+02, 1.2e+02]	19.3 fb ⁻¹	8 TeV
	⊢ −−1	Zγ	[-1.9e+02, 1.8e+02]	19.7 fb⁻¹	8 TeV
	H-4	Wγ	[-1.2e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV
	н	ss WW	[-4.4e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV
		ss WW	[-8.7e+00, 9.1e+00]	35.9 fb ⁻¹	13 TeV
	H	γγ→WW	[-1.1e+02, 1.0e+02]	20.2 fb ⁻¹	8 TeV
	н	γγ→WW	[-1.6e+01, 1.6e+01]	24.7 fb ⁻¹	7,8 TeV
$f_{M,2}/\Lambda^4$	HH	Ζγγ	[-5.1e+02, 5.1e+02]	20.3 fb ⁻¹	8 TeV
	H	Wγγ	[-7.0e+02, 6.8e+02]	19.4 fb ⁻¹	8 TeV
	H	Wγγ	[-2.5e+02, 2.5e+02]	20.3 fb ⁻¹	8 TeV
	н	Ζγ	[-3.2e+01, 3.1e+01]	19.7 fb ⁻¹	8 TeV
	н	Wγ	[-2.6e+01, 2.6e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,3}/\Lambda^4$	H	Ζγγ	[-8.5e+02, 9.2e+02]	20.3 fb ⁻¹	8 TeV
		Wγγ	[-1.2e+03, 1.2e+03]	19.4 fb ⁻¹	8 TeV
	H	Wγγ	[-4.4e+02, 4.7e+02]	20.3 fb ⁻¹	8 TeV
	н	Zγ	[-5.8e+01, 5.9e+01]	19.7 fb ⁻¹	8 TeV
	н	Wγ	[-4.3e+01, 4.4e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,4}/\Lambda^4$	Н	Wγ	[-4.0e+01, 4.0e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,5}/\Lambda^4$	н	Wγ	[-6.5e+01, 6.5e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,6} / \Lambda^4$	H	Wγ	[-1.3e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV
	н	ss WW	[-6.5e+01, 6.3e+01]	19.4 fb ⁻¹	8 TeV
		ss WW	[-1.2e+01, 1.2e+01]	35.9 fb⁻¹	13 TeV
$f_{M,7}/\Lambda^4$	H	Wγ	[-1.6e+02, 1.6e+02]	19.7 fb ⁻¹	8 TeV
	н	ss WW	[-7.0e+01, 6.6e+01]	19.4 fb ⁻¹	8 TeV
1 .	!	ss WW	[-1.3e+01, 1.3e+01]	35.9 fb⁻¹	13 TeV
				1000	
2000	0	2000	J	4000	_
		aQ	GC Limits @9	5% C.L.	[TeV ⁻⁴]

CMS EWK ss WW $\rightarrow \ell^{+/-}\ell^{+/-}qq$: using 19.4 fb⁻¹ of 8 TeV pp collisions Phys. Rev. Lett. 114, 051801 (2015)_g CMS $VW\gamma \rightarrow jj\ell\bar{\nu}\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys. Rev. D 90, 032008 (2014)_g CMS $\gamma\gamma \rightarrow W^+W^- \rightarrow e^+\mu^-$ scattering with 5.0 fb⁻¹ of 7 TeV and 19.7 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP_g CMS EWK qq $\rightarrow Z\gamma qq \rightarrow \ell^+\ell^-\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions CMS-PAS-SMP-14-018_g CMS EWK qq $\rightarrow W\gamma qq \rightarrow \ell^+\nu\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions CMS-PAS-SMP-14-011_g CMS W $\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ and $Z\gamma\gamma \rightarrow \ell^+\ell^-\gamma\gamma$ triboson production with 19.4 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP_g

ATLAS $W_{\gamma\gamma} \rightarrow \ell \bar{\nu}_{\gamma\gamma}$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys.Rev.Lett. 115 (2015) 3, 031802 Phys.Rev.Let

ATLAS/CMS limit

May 2017	CMS ATLAS	Channel	Limits	∫ <i>L</i> dt	√s
f _{τ.0} /Λ ⁴		Wγγ	[-3.4e+01, 3.4e+01]	19.4 fb ⁻¹	8 TeV
	H	Wyy	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
	HH	Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
	L	WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
	⊢ −−1	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
	⊢ ⊣	Zγ	[-3.4e+00, 3.4e+00]	29.2 fb ⁻¹	8 TeV
	⊢ −−−	Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
	H	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
	Н	ss WW	[-6.2e-01, 6.5e-01]	35.9 fb ⁻¹	13 TeV
	Н	ZZ	[-4.6e-01, 4.4e-01]	35.9 fb ⁻¹	13 TeV
f_{T_1}/Λ^4		Ζγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	—	Ŵγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	н	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
		ss WW	[-2.8e-01, 3.1e-01]	35.9 fb ⁻¹	13 TeV
	Ĥ	ZZ	[-6.1e-01, 6.1e-01]	35.9 fb ⁻¹	13 TeV
f_{T_2}/Λ^4		Ζγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
-,=	⊢	Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
	⊢−−−	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
	н	ss WW	[-8.9e-01, 1.0e+00]	35.9 fb ⁻¹	13 TeV
	н	ZZ	[-1.2e+00, 1.2e+00]	35.9 fb ⁻¹	13 TeV
$f_{T.5} / \Lambda^4$	I	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
	⊢ −−	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T.6} / \Lambda^4$	⊢⊣	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,7}/\Lambda^4$		Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,8}/\Lambda^4$	H	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
	н	Ζγ	[-1.8e+00, 1.8e+00]	20.2 fb ⁻¹	8 TeV
	н	ZZ	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV
$f_{T,9} / \Lambda^4$		Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
	⊢ ––1	Ζγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	H	Zγ	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV
	, , , M , , ,	ZZ	[-1.8e+00, 1.8e+00]	35.9 fb ⁻¹	13 TeV
-50	0	50	10	0	
00	U U	a	QGC Limits @9	5% C.L	. [TeV ⁻⁴]

CMS EWK ss WW $\rightarrow \ell^{+/-}\ell^{+/-}qq$: using 19.4 fb⁻¹ of 8 TeV pp collisions Phys. Rev. Lett. 114, 051801 (2015). CMS $VW\gamma \rightarrow jj\ell\bar{\nu}\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys. Rev. D 90, 032008 (2014). CMS $\gamma\gamma \rightarrow W^+W^- \rightarrow e^+\mu^-$ scattering with 5.0 fb⁻¹ of 7 TeV and 19.7 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP. CMS EWK qq $\rightarrow Z\gamma qq \rightarrow \ell^+\ell^-\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions CMS-PAS-SMP-14-018. CMS EWK qq $\rightarrow W\gamma qq \rightarrow \ell^+\nu\gamma$ qq: using 19.7 fb⁻¹ of 8 TeV pp collisions CMS-PAS-SMP-14-011. CMS $W\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ and $Z\gamma\gamma \rightarrow \ell^+\ell^-\gamma\gamma$ triboson production with 19.4 fb⁻¹ of 8 TeV pp collisions Submitted to JHEP. ATLAS $W\gamma\gamma \rightarrow \ell\bar{\nu}\gamma\gamma$ triboson production with 19.3 fb⁻¹ of 8 TeV pp collisions Phys.Rev.Lett. 115 (2015) 3, 031802. CMS EWL and the tribulation of the temperature of temperature of the temperature of temperature of temperature of the temperature of temperat